Электрооборудование дома и дачи — Подключение электричества: три фазы или одна? (ro): Рассылка

Электрооборудование дома и дачи — Подключение электричества: три фазы или одна?

Подключение электричества: три фазы или одна?

Любой объект, будь то коттедж, дача или загородный дом не может обойтись без подключения электричества. Не освоенному дачному участку, конечно, электричество «до фени», но как только принято решение о строительстве загородного дома проблема подключения электричества становится насущной. Перед тем, как обратиться за разрешением на подключение электричества к загородному дому, следует определиться с необходимой мощностью и нюансами ее распределения между имеющимися или перспективными источниками потребления. Владелец загородного дома вынужден «чесать репу» и задумываться о том, как подключить электричество посредством трех фаз или одной.

Потребляемая мощность электричества в жилах домах непрерывно растет. Если сравнить современные бытовые электроприборы с электроприборами средины прошлого века, то без вооруженного взгляда можно прийти к выводу, что потребляемая мощность электричества выросло в несколько раз. Причем из года в год наблюдается тенденция постоянного увеличения потребляемой мощности электричества на душу населения. Причина заключается в том, что в каждом доме появилась львиная доля бытовых потребителей электроэнергии (электрочайники, стиральные машины, электроутюги). которые характеризуются повышенным спросом на подключение электричества и требуют соответственно потребляемую мощность большего объема. Нормальное функционирование и жизнеобеспечение загородного дома не мыслится без таких потребителей электроэнергии, как электронасосов, электрических котлов, сварочных аппаратов, электродвигателей, ТЭНов различного назначения и др. силовых агрегатов. Поэтому в загородных домах все чаще стали подключать три фазы электричества, отказываясь от традиционной однофазной электросети.

В чем же преимущество трехфазной линии электропередачи от однофазной?

Многие владельцы загородных домов считают, что трехфазная электросеть допускает потреблять больше мощности, т.е. подключать больше потребителей. Однако это предположение не в полной мере соответствует действительности. В инструкции ФАС указано, что максимально разрешенная мощность для загородного дома составляет 15 кВт без привязки к трехфазной или однофазной электросети. Конкретная потребляемая мощность для того или иного загородного дома указывается отдельно в технических условиях на подключение электричества. Как правило, потребляемая мощность определяется возможностями трансформаторной подстанции (ТП) электросети и предполагаемым числом точек подключения электричества. В этом случае соответствующие органы могут установить единую потребляемую мощность, например, те же 5 кВт, как для трехфазной электросети, так и для однофазной. Таким образом, в потребляемой мощности здесь выигрыш практически отсутствует.

В то же время не следует забывать, что при одинаковой потребляемой мощности для ввода трехфазной электросети в загородный дом можно использовать силовой кабель с жилами меньшей площади сечения. Причина заключается в том, что потребляемая мощность, а, следовательно, и ток распределяются по трем фазам. Тогда в меньшей степени нагружается каждый фазный провод и номинал вводного автоматического выключателя в трехфазной электросети, будет тоже соответственно меньшим. Вместе с тем, возрастает в два раза число жил вводного силового кабеля: с двух до четырех, вместо одно(двух) полюсного вводного автоматического выключателя потребуется трех(четырех) полюсный, а для учета электроэнергии – трехфазный электросчетчик. Вследствие этого увеличиваются габариты электрощитка (ЩРН) и соответственно стоимость материалов и комплектующих узлов. В дополнение ко всему, как правило, все наиболее распространенные бытовые потребители электроэнергии рассчитаны для работы в однофазной электросети переменного тока.

Однако недостатки трехфазной электросети меркнут перед ее преимуществами. Для любого владельца загородного дома «фора» трехфазной электросети проявляется с первых же минут. С одной стороны, известно, что асинхронные электродвигатели в трехфазной электросети работают с лучшими энергетическими и механическими параметрами. Следовательно, реализуется возможность непосредственного подключения электричества к таким трехфазным потребителям электроэнергии, как электрические котлы, асинхронные электроприводы и др. С другой стороны, мощные потребители электроэнергии – те же котлы, электроплиты, обогреватели, сварочные аппараты и т.д. не вызывают «перекоса фаз», так как нагрузка таких потребителей электроэнергии равномерно распределяется между тремя фазами электросети.

Проблема «перекоса фаз» довольно-таки щекотливая, поэтому есть смысл рассмотреть ее более детально. Перекос фаз проявляется в трехфазных четырех (пяти)- проводных электросетях с глухозаземленной нейтралью и напряжение до 1 000 В. Как правило, низковольтная трехфазная электросеть напряжением 400 В (0,4 кВ) содержит источники электроэнергии, обмотки которых соединены «звездой» с выведенным нулем.

Идеальную модель, отображающую взаимосвязь и взаимное расположение фазных и линейных напряжений можно изобразить в виде равностороннего треугольника с вершинами «А», «B», «С» и центром «0». Разности потенциалов между точками — АВ, ВС и CA являются линейными напряжениями (380 В), а разности потенциалов между точками — 0A, 0B и 0С являются фазными напряжениями (220 В). В идеальном случае фазные напряжения равны между собой U 0A = U 0B = U и сдвинуты друг относительно друга на угол 120, т. е. L A0B = L B0C = L C0A =120. При симметричной нагрузке д ля соединения обмоток звездой справедливо такое соотношение между линейными и фазными токами и напряжениями:

а мощность трёхфазной сети равна:

Из формулы видно, что мощность трехфазной электросети сети отличается от мощности однофазной не в три раза, как вначале предполагалось, а всего лишь примерно в 1, 73 раза.

Представленная на рисунке модель электросети является идеальной и перекос фазных напряжений в ней отсутствует. Но по той причине, что к трансформаторной подстанции электросети подключается множество потребителей электроэнергии, в том числе и однофазных, то в каждый случайный момент времени можно ожидать, что нагрузки в разных фазах будут заметно отличаться. Причем если даже однофазные нагрузки по величине одинаковы, то их подключение к электросети или отключение не может происходить синхронно. Возникает ситуация, когда Z A > Z B > Z C ≠ 0, где " Z " – это полное сопротивление нагрузки, и, соответственно, " Z A " — это полное сопротивление нагрузки на фазе А, " Z B " — это полное сопротивление нагрузки на фазе B, " Z C " — это полное сопротивление нагрузки на фазе C. Если взглянуть на приведенный выше равносторонний треугольник, то графически это будет выглядеть следующим образом: точка 0 в центре треугольника, из которой исходят векторы идеальных фазных напряжений величиной 220В: E 0A. E 0B и E — смещается относительно центра треугольника. Пусть будет это точка 0′. Смещаются и сами векторы фазных напряжений на произвольный угол друг относительно друга. Смещенные векторы фазных напряжений E 0’A. E 0’B и E 0’С не равны между собой, т.е. E 0’A ≠ E 0’B ≠ E 0’С. Таким образом, напряжения в каждой фазе никогда не будут иметь одинаковый сдвиг и значение. Отсюда различие фазных нагрузок по величине и характеру создает условия для возникновения перекоса фазных напряжений.

Щелкните здесь и наглядно убедитесь к чему приводит перекос фаз.

При симметричной нагрузке в трёхфазной электросети подключение потребителя электроэнергии к линейному напряжению возможно даже при отсутствии нейтрального провода. Однако, при подключении потребителя электроэнергии к фазному напряжению, когда нагрузка на фазы не является строго симметричной, наличие нейтрального провода обязательно. В случае обрыва или значительного увеличения его сопротивления (плохой контакт) также происходит так называемый «перекос фаз». В конечном итоге подключенный потребитель электроэнергии, рассчитанный на фазное напряжение, может оказаться под произвольным напряжением в диапазоне от нуля до линейного (конкретное значение зависит от распределения нагрузки по фазам в момент обрыва нулевого провода). Повышенное напряжение зачастую является причиной выхода из строя бытовой радиоэлектронной техники, а также может привести к пожару. Пониженное напряжение также не всегда благоприятно влияет на радиоэлектронную технику и может послужить причиной выхода ее из строя. К этому больше всего подвержены электродвигатели холодильников. Поэтому дорогостоящие аппараты (электрические котлы, компьютеры, холодильники, стиральные машины, телевизоры и др.) следует подключать к электричеству в загородном доме через стабилизаторы напряжения. Для этих целей в трехфазной электросети можно выделить даже отдельную фазу.

В однофазной электросети перекос фаз часто становится причиной того, что потребители электроэнергии, подключенные к «неудачной фазе», вынуждены мириться со слишком низким напряжением в электросети, что в большей степени касается подключения электричества к загородному дому. Обладателей трехфазной электросети такие вопросы «колышут» меньше всего, поскольку у них есть возможность подключения (переключения) особо важных и капризных однофазных потребителей электроэнергии к той фазе, напряжение которой меньше всего подвержено просадке из-за перекоса фаз.

Подключение электричества к загородному дому с помощью трех фаз не снимает полностью проблему перекоса фаз, так как в общей электросети, как указывалось ранее, достаточно много разных потребителей электроэнергии. Однако в своей внутренней электросети, т.е. после прибора учета электроэнергии, необходимо распределить нагрузку однофазных потребителей электроэнергии максимально равномерно. Далее, при подключении электричества к загородному дому не следует упускать из вида то, что напряжение трехфазной электросети составляет 380 В, которое ощутимо выше привычных 220 В. Поэтому при работе и эксплуатации трехфазной электросети требуется повышенное внимание уделять электробезопасности. Если подходить с позиций норм пожарной безопасности, то трехфазная электросеть также более опасна по той причине, что ток короткого замыкания будет намного выше.

На заметку.Нередко в ТТХ однофазных электрических аппаратов указываются два значения питающего напряжения, в частности для некоторых типов сварочных трансформаторов — 220 В и 380 В, т.е. фазное напряжение и линейное соответственно. Учитывая большую потребляемую мощность подобными изделиями, рекомендуется с целью уменьшения перекоса фаз подключать их к линейному напряжению 380 В, т.е. к двум фазам. При выборе фаз следует исходить из того, чтобы фаза, от которой осуществляется питание бытовой радиоэлектронной техники, чувствительной к перепадам напряжения не была задействована.

Подводя итог сказанному, следует еще раз акцентировать внимание на основных недостатках и преимуществах подключения трехфазной электросети к загородному дому.

Итак, к основным недостаткам трехфазной электросети можно отнести:

1. Необходимость получения разрешения и технических условий от районной Электросети (РЭС), что связано с определенной волокитой для владельца загородного дома. В дачном кооперативе этот процесс менее болезненный, так как его согласование обычно проходит на уровне Правления.

2. Опасность поражения электрическим током и пожарная опасность существуют при любом раскладе, но эти опасности обостряются при эксплуатации трехфазной электросети. Поэтому, помимо автоматического выключателя, устанавливаемого обычно перед электросчетчиком на вводе электричества в дом, необходимо предусмотреть четырех полюсный автоматический выключатель типа УЗО или дифференциального автомата с небольшим током утечки

3. Необходимость установки модульных ограничителей перенапряжения в ЩРН, поскольку не исключен обрыв индивидуального рабочего нуля в трехфазной электросети, последствия которого чреваты перенапряжением в одной наименее нагруженной фазе.

4. Увеличение габаритов ЩРН, но по сути дела не в критическом объеме, так как современные электронные счетчики и автоматические выключатели как для трехфазной электросети, так и для однофазной отличаются от своих предшественников компактностью и небольшими размерами.

Преимущества трехфазной электросети:

1. Возможность непосредственного подключения электричества к трехфазным мощным потребителям электроэнергии.

2. Перераспределение потребляемой мощности между фазами, сводя перекос фаз к минимуму.

3. Снижение номиналов по току автоматических выключателей и площади сечения жил силового кабеля.

4. Возможность увеличения в некоторых случаях максимально разрешенной потребляемой мощности электроэнергии при лояльном отношении районной Электросети.

Таким образом, практика подключения электричества с использованием трехфазной электросети себя оправдывает, если жилая площадь загородного дома более 100 кв. м. В этом случае однофазных потребителей электроэнергии может быть очень много и нагрузку в местной электросети можно распределить с соблюдением максимальной симметрии. Также трехфазная электросеть удобна тем владельцам загородных домов, который планируют подключение электричества для мощных трехфазных потребителей электроэнергии. В остальных случаях подключение трехфазной электросети может оказаться излишним и стать причиной очередной головной боли владельца загородного дома.

В заключение для тех, кто любит мастерить своим руками будет полезен « Сборник технической литературы ».