ОБЩАЯ ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА

Elektrotechnik fuer Grundlagen der Elektronik

ОБЩАЯ ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА

1. Основные определения

1.1. Основные пояснения и термины

Электротехника — это область науки и техники, изучающая электрические и магнитные явления и их использование в практических целях получения, преобразования, передачи и потребления электрической энергии.

Электроника — это область науки и техники, изучающая электрические и магнитные явления и их использование в практических целях получения, преобразования, передачи и потребления информации.

Каждая наука имеет свою терминологию. Запомним термины, понятия электротехники и электроники.

Электрическая цепь — это совокупность устройств, предназначенных для производства, передачи, преобразования и использования электрического тока .

Все электротехнические устройства по назначению, принципу действия и конструктивному оформлению можно разделить на три большие группы.

Источники энергии. т.е. устройства, вырабатывающие электрический ток (генераторы, термоэлементы, фотоэлементы, химические элементы).

Приемники, или нагрузка, т.е. устройства, потребляющие электрический ток (электродвигатели, электролампы, электрические механизмы и т.д.).

Проводники, а также различная коммутационная аппаратура (выключатели, реле, контакторы и т.д.).

Направленное движение электрических зарядов называют электрическим током. Электрический ток может возникать в замкнутой электрической цепи. Электрический ток, направление и величина которого неизменны, называют постоянным током и обозначают прописной буквой I .

Электрический ток, величина и направление которого не остаются постоянными, называется переменным током. Значение переменного тока в рассматриваемый момент времени называют мгновенным и обозначают строчной буквой i .

Для работы электрической цепи необходимо наличие источников энергии. В любом источнике за счет сторонних сил неэлектрического происхождения создается электродвижущая сила. На зажимах источника возникает разность потенциалов или напряжение, под воздействием которого во внешней, присоединенной к источнику части цепи, возникает электрический ток.
Различают активные и пассивные цепи, участки и элементы цепей. Активными называют электрические цепи, содержащие источники энергии, пассивными — электрические цепи, не содержащие источников энергии.

Электрическую цепь называют линейной, если ни один параметр цепи не зависит от величины или направления тока, или напряжения.
Электрическая цепь является нелинейной, если она содержит хотя бы один нелинейный элемент. Параметры нелинейных элементов зависят от величины или направления тока, или напряжения.

Электрическая схема — это графическое изображение электрической цепи, включающее в себя условные обозначения устройств и показывающее соединение этих устройств. На рис. 1.1 изображена электрическая схема цепи, состоящей из источника энергии, электроламп 1 и 2, электродвигателя 3.

Для облегчения анализа электрическую цепь заменяют схемой замещения.
Схема замещения — это графическое изображение электрической цепи с помощью идеальных элементов, параметрами которых являются параметры замещаемых элементов.

На рисунке 1.2 показана схема замещения.

1.2. Пассивные элементы схемы замещения

Простейшими пассивными элементами схемы замещения являются сопротивление, индуктивность и емкость.
В реальной цепи электрическим сопротивлением обладают не только реостат или резистор, но и проводники, катушки, конденсаторы и т.д. Общим свойством всех устройств, обладающих сопротивлением, является необратимое преобразование электрической энергии в тепловую. Тепловая энергия, выделяемая в сопротивлении, полезно используется или рассеивается в пространстве. В схеме замещения во всех случаях, когда надо учесть необратимое преобразование энергии, включается сопротивление.

Сопротивление проводника определяется по формуле

где l — длина проводника;
S — сечение;
r — удельное сопротивление.

Величина, обратная сопротивлению, называется проводимостью.

Сопротивление измеряется в омах (Ом), а проводимость — в сименсах (См).

Сопротивление пассивного участка цепи в общем случае определяется по формуле

где P — потребляемая мощность;
I — ток.
Сопротивление в схеме замещения изображается следующим образом:

Индуктивностью называется идеальный элемент схемы замещения, характеризующий способность цепи накапливать магнитное поле. Полагают, что индуктивностью обладают только индуктивные катушки. Индуктивностью других элементов электрической цепи пренебрегают.

Индуктивность катушки, измеряемая в генри [Гн], определяется по формуле

где W — число витков катушки;
Ф — магнитный поток катушки, возбуждаемый током i.

На рисунке показано изображение индуктивности в схеме замещения.

Емкостью называется идеальный элемент схемы замещения, характеризующий способность участка электрической цепи накапливать электрическое поле. Полагают, что емкостью обладают только конденсаторы. Емкостью остальных элементов цепи пренебрегают.

Емкость конденсатора, измеряемая в фарадах (Ф), определяется по формуле:

где q — заряд на обкладках конденсатора;
Uс — напряжение на конденсаторе.

На рисунке показано изображение емкости в схеме замещения

Активные элементы схемы замещения

Любой источник энергии можно представить в виде источника ЭДС или источника тока. Источник ЭДС — это источник, характеризующийся электродвижущей силой и внутренним сопротивлением.Идеальным называется источник ЭДС, внутреннее сопротивление которого равно нулю.

На рис. 1.3 изображен источник ЭДС, к зажимам которого подключено сопротивление R.
Ri — внутреннее сопротивление источника ЭДС.
Стрелка ЭДС направлена от точки низшего потенциала к точке высшего потенциала, стрелка напряжения на зажимах источника U12 направлена в противоположную сторону от точки с большим потенциалом к точке с меньшим потенциалом.

У идеального источника ЭДС внутреннее сопротивление Ri = 0, U12 = E.
Из формулы (1.3) видно, что напряжение на зажимах реального источника ЭДС уменьшается с увеличением тока. У идеального источника напряжение на зажимах не зависит от тока и равно электродвижущей силе.
Возможен другой путь идеализации источника: представление его в виде источника тока.
Источником тока называется источник энергии, характеризующийся величиной тока и внутренней проводимостью.

Идеальным называется источник тока, внутренняя проводимость которого равна нулю.

Поделим левую и правую части уравнения (1.2) на Ri и получим

где — ток источника тока;

У идеального источника тока gi = 0 и J = I.

Ток идеального источника не зависит от сопротивления внешней части цепи. Он остается постоянным независимо от сопротивления нагрузки. Условное изображение источника тока показано на рис. 1.4.

Любой реальный источник ЭДС можно преобразовать в источник тока и наоборот. Источник энергии, внутреннее сопротивление которого мало по сравнению с сопротивлением нагрузки, приближается по своим свойствам к идеальному источнику ЭДС.

Если внутреннее сопротивление источника велико по сравнению с сопротивлением внешней цепи, он приближается по своим свойствам к идеальному источнику тока.

1.4.Основные определения, относящиеся к схемам

Различают разветвленные и неразветвленные схемы.
На рис. 1.5 изображена неразветвленная схема.
На рис. 1.6 показана разветвленная схема, содержащая два источника ЭДС и 5 сопротивлений.
Сопротивления соединительных проводов принимают равными нулю.

Разветвленная схема — это сложная комбинация соединений пассивных и активных элементов.
На рис. 1.6 показана разветвленная схема, содержащая два источника ЭДС и 5 сопротивлений.
Сопротивления соединительных проводов принимают равными нулю.

Рис. 1.5 Участок электрической цепи, по которому проходит один и тот же ток, называется ветвью. Место соединения двух и более ветвей электрической цепи называется узлом. Узел, в котором сходятся две ветви, называется устранимым. Узел является неустранимым, если в нем соединены три и большее число ветвей. Узел в схеме обозначается точкой.

Последовательным называют такое соединение участков цепи, при котором через все участки проходит одинаковый ток. При параллельном соединении все участки цепи присоединяются к одной паре узлов, находятся под одним и тем же напряжением.
Любой замкнутый путь, включающий в себя несколько ветвей, называется контуром.

1.5. Режимы работы электрических цепей

В зависимости от нагрузки различают следующие режимы работы: номинальный, режим холостого хода, короткого замыкания, согласованный режим.
При номинальном режиме электротехнические устройства работают в условиях, указанных в паспортных данных завода-изготовителя. В нормальных условиях величины тока, напряжения, мощности не превышают указанных значений.
Режим холостого хода возникает при обрыве цепи или отключении сопротивления нагрузки.
Режим короткого замыкания получается при сопротивлении нагрузки, равном нулю. Ток короткого замыкания в несколько раз превышает номинальный ток. Режим короткого замыкания является аварийным.
Согласованный режим — это режим передачи от источника к сопротивлению нагрузки наибольшей мощности. Согласованный режим наступает тогда, когда сопротивление нагрузки становится равным внутреннему сопротивлению источника. При этом в нагрузке выделяется максимальная мощность.

1.6. Основные законы электрических цепей

На рис. 1.7 изображен участок цепи с сопротивлением R. Ток, протекающий через сопротивление R, пропорционален падению напряжения на сопротивлении и обратно пропорционален величине этого сопротивления.

Падением напряжения на сопротивлении называется произведение тока, протекающего через сопротивление, на величину этого сопротивления.

Основными законами электрических цепей, наряду с законом Ома, являются законы баланса токов в разветвлениях (первый закон Кирхгофа) и баланса напряжений на замкнутых участках цепи (второй закон Кирхгофа). В соответствии с первым законом Кирхгофа, алгебраическая сумма токов в любом узле цепи равна нулю:

Возьмем схему на рис. 1.8 и запишем для нее уравнение по первому закону Кирхгофа.

Токам, направленным к узлу, присвоим знак «плюс», а токам, направленным от узла — знак «минус». Получим следующее уравнение:

Согласно второму закону Кирхгофа, алгебраическая сумма ЭДС вдоль любого замкнутого контура равна алгебраической сумме падений напряжений в этом контуре

Возьмем схему на рис. 1.9 и запишем для внешнего контура этой схемы уравнение по второму закону Кирхгофа.

Для этого выберем произвольно направление обхода контура, например, по часовой стрелке. ЭДС и падения напряжений записываются в левую и правую части уравнения со знаком «плюс», если направления их совпадают с направлением обхода контура, и со знаком «минус», если не совпадают.
При определении тока в ветви, содержащей источник ЭДС, используют закон Ома для активной ветви.

Возьмем ветвь, содержащую сопротивления и источники ЭДС. Ветвь включена к узлам a-b, известно направление тока в ветви (рис. 1.10).

Возьмем замкнутый контур, состоящий из активной ветви и стрелки напряжения Uab, и запишем для него уравнение по второму закону Кирхгофа. Выберем направление обхода контура по часовой стрелке.

Из этого уравнения выведем формулу для тока

где Σ R — сумма сопротивлений ветви;
Σ E — алгебраическая сумма ЭДС.

ЭДС в формуле записывается со знаком «плюс», если направление ее совпадает с направлением тока и со знаком «минус», если не совпадает.

2. Эквивалентные преобразования схем

Эквивалентным называется преобразование, при котором напряжения и токи в частях схемы, не подвергшихся преобразованию, не меняются.

2.1 Последовательное соединение элементов
электрических цепей

На рис. 2.1 изображена электрическая цепь с последовательно соединенными сопротивлениями.

Напряжение на зажимах источника ЭДС равно величине электродвижущей силы. Поэтому часто источник на схеме не изображают.
Падения напряжений на сопротивлениях определяются по формулам

В соответствии со вторым законом Кирхгофа, напряжение на входе электрической цепи равно сумме падений напряжений на сопротивлениях цепи.

где — эквивалентное сопротивление.

Эквивалентное сопротивление электрической цепи, состоящей из n последовательно включенных элементов, равно сумме сопротивлений этих элементов.

2.2. Параллельное соединение элементов
электрических цепей

На рис. 2.2 показана электрическая цепь с параллельным соединением сопротивлений.

Токи в параллельных ветвях определяются по формулам:

где — проводимости 1-й, 2-й и n-й ветвей.

В соответствии с первым законом Кирхгофа, ток в неразветвленной части схемы равен сумме токов в параллельных ветвях.

Эквивалентная проводимость электрической цепи, состоящей из n параллельно включенных элементов, равна сумме проводимостей параллельно включенных элементов.
Эквивалентным сопротивлением цепи называется величина, обратная эквивалентной проводимости

Пусть электрическая схема содержит три параллельно включенных сопротивления.
Эквивалентная проводимость

Эквивалентное сопротивление схемы, состоящей из n одинаковых элементов, в n раз меньше сопротивлений R одного элемента

Возьмем схему, состоящую из двух параллельно включенных сопротивлений (рис. 2.3). Известны величины сопротивлений и ток в неразветвленной части схемы. Необходимо определить токи в параллельных ветвях.

Рис. 2.3 Эквивалентная проводимость схемы

а эквивалентное сопротивление

Напряжение на входе схемы

Токи в параллельных ветвях

Ток в параллельной ветви равен току в неразветвленной части схемы, умноженному на сопротивление противолежащей, чужой параллельной ветви и деленному на сумму сопротивлений чужой и своей параллельно включенных ветвей.

2.3.Преобразование треугольника сопротивлений
в эквивалентную звезду

Встречаются схемы, в которых отсутствуют сопротивления, включенные последовательно или параллельно, например, мостовая схема, изображенная на рис. 2.4. Определить эквивалентное сопротивление этой схемы относительно ветви с источником ЭДС описанными выше методами нельзя. Если же заменить треугольник сопротивлений
R1-R2-R3, включенных между узлами 1-2-3, трехлучевой звездой сопротивлений, лучи которой расходятся из точки 0 в те же узлы 1-2-3, эквивалентное сопротивление полученной схемы легко определяется.

Рис. 2.4 Сопротивление луча эквивалентной звезды сопротивлений равно произведению сопротивлений прилегающих сторон треугольника, деленному на сумму сопротивлений всех сторон треугольника.
В соответствии с указанным правилом, сопротивления лучей звезды определяются по формулам:

Эквивалентное соединение полученной схемы определяется по формуле

Сопротивления R0 и Rλ1 включены последовательно, а ветви с сопротивлениями Rλ1 + R4 и Rλ3 + R5 соединены параллельно.

2.4.Преобразование звезды сопротивлений
в эквивалентный треугольник

Иногда для упрощения схемы полезно преобразовать звезду сопротивлений в эквивалентный треугольник.
Рассмотрим схему на рис. 2.5. Заменим звезду сопротивлений R1-R2-R3 эквивалентным треугольником сопротивлений RΔ1-RΔ2-RΔ3, включенных между узлами 1-2-3.

2.5. Преобразование звезды сопротивлений
в эквивалентный треугольник

Сопротивление стороны эквивалентного треугольника сопротивлений равно сумме сопротивлений двух прилегающих лучей звезды плюс произведение этих же сопротивлений, деленное на сопротивление оставшегося (противолежащего) луча. Сопротивления сторон треугольника определяются по формулам:

Эквивалентное сопротивление преобразованной схемы равно

3. Анализ электрических цепей постоянного тока
с одним источником энергии

3.1. Расчет электрических цепей постоянного тока
с одним источником методом свертывания

В соответствии с методом свертывания, отдельные участки схемы упрощают и постепенным преобразованием приводят схему к одному эквивалентному (входному) сопротивлению, включенному к зажимам источника. Схема упрощается с помощью замены группы последовательно или параллельно соединенных сопротивлений одним, эквивалентным по сопротивлению. Определяют ток в упрощенной схеме, затем возвращаются к исходной схеме и определяют в ней токи.
Рассмотрим схему на рис. 3.1. Пусть известны величины сопротивлений R1, R2, R3, R4, R5, R6, ЭДС Е. Необходимо определить токи в ветвях схемы.

Рис. 3.1 Рис. 3.2 Сопротивления R4 и R5 соединены последовательно, а сопротивление R6 — параллельно с ними, поэтому их эквивалентное сопротивление

После проведенных преобразований схема принимает вид, показанный на рис. 3.2, а эквивалентное сопротивление всей цепи

Ток I1 в неразветвленной части схемы определяется по формуле:

Найдем токи I2 и I3 в схеме на рис. 3.2 по формулам:

I3 = I1 — I2 — формула получается из уравнения, составленного по первому закону Кирхгофа:

Переходим к исходной схеме на рис. 3.1 и определим токи в ней по формулам:

I6 = I3 — I4 (в соответствии с первым законом Кирхгофа I3 — I4 — I6 =0).

3.2. Расчет электрических цепей постоянного тока
с одним источником методом подобия
или методом пропорциональных величин

Возьмем электрическую схему на рис. 3.1, зададимся произвольным значением тока Ч в сопротивлении R6, наиболее удаленном от источника питания. По заданному току и сопротивлению R6 определим напряжение . Далее определим:

Находим значение ЭДС

Найденное значение ЭДС отличается от заданной величины ЭДС Е.

Вычислим коэффициент подобия . Умножим на него полученные при расчете значения токов и напряжений, находим действительные значения токов цепи.

4 Анализ сложных электрических цепей
с несколькими источниками энергии

4.1. Метод непосредственного применения
законов Кирхгофа

На рис. 4.1 изображена схема разветвленной электрической цепи. Известны величины сопротивлений и ЭДС, необходимо определить токи.
В схеме имеются четыре узла, можно составить четыре уравнения по первому закону Кирхгофа.

Укажем произвольно направления токов. Запишем уравнения::

Сложим эти уравнения. Получим тождество 0 = 0. Система уравнений (4.1) является зависимой.
Если в схеме имеется n узлов, количество независимых уравнений, которые можно составить по первому закону Кирхгофа, равно n — 1.
Для схемы на рис. 4.1 число независимых уравнений равно трем.

Недостающее количество уравнений составляют по второму закону Кирхгофа. Уравнения по второму закону составляют для независимых контуров. Независимым является контур, в который входит хотя бы одна новая ветвь, не вошедшая в другие контуры.
Выберем три независимых контура и укажем направления обхода контуров. Запишем три уравнения по второму закону Кирхгофа.

Решив совместно системы уравнений (4.2) и (4.3), определим токи в схеме.
Ток в ветви может иметь отрицательное значение. Это означает, что действительное направление тока противоположно выбранному нами.

Метод контурных токов

Метод непосредственного применения законов Кирхгофа громоздок. Имеется возможность уменьшить количество совместно решаемых уравнений системы. Число уравнений, составленных по методу контурных токов, равно количеству уравнений, составляемых по второму закону Кирхгофа.
Метод контурных токов заключается в том, что вместо токов в ветвях определяются, на основании второго закона Кирхгофа, так называемые контурные токи, замыкающиеся в контурах.
На рис. 4.2 в качестве примера изображена двухконтурная схема, в которой I11 и I22 — контурные токи.

Рис. 4.2
Токи в сопротивлениях R1 и R2 равны соответствующим контурным токам. Ток в сопротивлении R3, являющийся общим для обоих контуров, равен разности контурных токов I11 и I22, так как эти токи направлены в ветви с R3 встречно.

Выбираются независимые контуры, и задаются произвольные направления контурных токов.
В нашем случае эти токи направлены по часовой стрелке. Направление обхода контура совпадает с направлением контурных токов. Уравнения для этих контуров имеют следующий вид.

Перегруппируем слагаемые в уравнениях

Суммарное сопротивление данного контура называется собственным сопротивлением контура.
Собственные сопротивления контуров схемы

Сопротивление R3, принадлежащее одновременно двум контурам, называется общим сопротивлением этих контуров.

где R12 — общее сопротивление между первым и вторым контурами;
R21 — общее сопротивление между вторым и первым контурами.
E11 = E1 и E22 = E2 — контурные ЭДС.
В общем виде уравнения (4.4) и (4.5) записываются следующим образом:

Собственные сопротивления всегда имеют знак «плюс».
Общее сопротивление имеет знак «минус», если в данном сопротивлении контурные токи направлены встречно друг другу, и знак «плюс», если контурные токи в общем сопротивлении совпадают по направлению.
Решая уравнения (4.4) и (4.5) совместно, определим контурные токи I11 и I22, затем от контурных токов переходим к токам в ветвях.
Ветви схемы, по которым протекает один контурный ток, называются внешними, а ветви, по которым протекают несколько контурных токов, называются общими. Ток во внешней ветви совпадает по величине и по направлению c контурным. Ток в общей ветви равен алгебраической сумме контурных токов, протекающих в этой ветви.
В схеме наРис. 4.2

Контуры выбирают произвольно, но целесообразно выбрать контуры таким образом, чтобы их внутренняя область не пересекалась ни с одной ветвью, принадлежащей другим контурам.
Контурные токи желательно направлять одинаково (по часовой стрелке или против).
Если нужно определить ток в одной ветви сложной схемы, необходимо сделать его контурным.
Если в схеме имеется ветвь с известным контурным током, этот ток следует сделать контурным, благодаря чему количество уравнений становится на единицу меньше.

4.3. Метод узловых потенциалов

Метод узловых потенциалов позволяет составить систему уравнений, по которой можно определить потенциалы всех узлов схемы. По известным разностям узловых потенциалов можно определить токи во всех ветвях. В схеме на рисунке 4.3 имеется четыре узла. Потенциал любой точки схемы можно принять равным нулю. Тогда у нас останутся неизвестными три потенциала. Узел, величину потенциала которого выбирают произвольно, называют базисным. Укажем в схеме произвольно направления токов. Примем для схемы ?4 = 0.

Запишем уравнение по первому закону Кирхгофа для узла 1.

В соответствии с законами Ома для активной и пассивной ветви

где — проводимость первой ветви.

где — проводимость второй ветви.

Подставим выражения токов в уравнение (4.6).

где g11 = g1 + g2 — собственная проводимость узла 1.

Собственной проводимостью узла называется сумма проводимостей ветвей, сходящихся в данном узле.
g12 = g2 — общая проводимость между узлами 1 и 2.
Общей проводимостью называют проводимость ветви, соединяющей узлы 1 и 2.

— сумма токов источников, находящихся в ветвях, сходящихся в узле 1.
Если ток источника направлен к узлу, величина его записывается в правую часть уравнения со знаком «плюс», если от узла — со знаком «минус».
По аналогии запишем для узла 2:

(4.9)
Решив совместно уравнения (4.7), (4.8), (4.9), определим неизвестные потенциалы ?1. 2. 3, а затем по закону Ома для активной или пассивной ветви найдем токи.
Если число узлов схемы — n, количество уравнений по методу узловых потенциалов — (n — 1).

Если в какой-либо ветви содержится идеальный источник ЭДС, необходимо один из двух узлов, между которыми включена эта ветвь, выбрать в качестве базисного, тогда потенциал другого узла окажется известным и равным величине ЭДС. Количество составляемых узловых уравнений становится на одно меньше.

4.4. Метод двух узлов

Схема на рис. 4.4 имеет два узла. Потенциал точки 2 примем
равным нулю ?2 = 0. Составим узловое уравнение для узла 1.

где , , — проводимости ветвей.

В знаменателе формулы — сумма проводимостей параллельно включенных ветвей. В числителе — алгебраическая сумма произведений ЭДС источников на проводимости ветвей, в которые эти ЭДС включены. ЭДС в формуле записывается со знаком «плюс», если она направлена к узлу 1, и со знаком «минус», если направлена от узла 1.
После вычисления величины потенциала ?1 находим токи в ветвях, используя закон Ома для активной и пассивной ветви.

4.5. Метод эквивалентного генератора

Этот метод используется тогда, когда надо определить ток только в одной ветви сложной схемы.
Чтобы разобраться с методом эквивалентного генератора, ознакомимся сначала с понятием «двухполюсник».
Часть электрической цепи с двумя выделенными зажимами называется двухполюсником. Двухполюсники, содержащие источники энергии, называются активными. На рис. 4.5 показано условное обозначение активного двухполюсника.
Двухполюсники, не содержащие источников, называются пассивными. На эквивалентной схеме пассивный двухполюсник может быть заменен одним элементом — внутренним или входным сопротивлением пассивного двухполюсника Rвх. На рис. 4.6 условно изображен пассивный двухполюсник и его эквивалентная схема.

Входное сопротивление пассивного двухполюсника можно измерить.
Если известна схема пассивного двухполюсника, входное сопротивление его можно определить, свернув схему относительно заданных зажимов.
Дана электрическая цепь. Необходимо определить ток I1 в ветви с сопротивлением R1 в этой цепи. Выделим эту ветвь, а оставшуюся часть схемы заменим активным двухполюсником (рис. 4.7).
Согласно теореме об активном двухполюснике, любой активный двухполюсник можно заменить эквивалентным генератором (источником напряжения) с ЭДС, равным напряжению холостого хода на зажимах этого двухполюсника и внутренним сопротивлением, равным входному сопротивлению того же двухполюсника, из схемы которого исключены все источники (рис. 4.8). Искомый ток I1 определится по формуле:

Параметры эквивалентного генератора (напряжение холостого хода и входное сопротивление) можно определить экспериментально или расчетным путем.
Ниже показан способ вычисления этих параметров расчетным путем в схеме на рис. 4.2. Изобразим на рис. 4.9 схему, предназначенную для определения напряжения холостого хода. В этой схеме ветвь с сопротивлением R1 разорвана, это сопротивление удалено из схемы. На разомкнутых зажимах появляется напряжение холостого хода. Для определения этого напряжения составим уравнение для первого контура по второму закону Кирхгофа

где определяется из уравнения, составленного по второму закону Кирхгофа для второго контура

Так как первая ветвь разорвана, ЭДС Е1 не создает ток. Падение напряжения на сопротивлении Rвн1 отсутствует.
На рис. 4.10 изображена схема, предназначенная для определения входного сопротивления.

Из схемы на рис. 4.9 удалены все источники (Е1 и Е2), т.е. эти ЭДС мысленно закорочены. Входное сопротивление Rвх определяют, свертывая схему относительно зажимов 1-1′

Для определения параметров эквивалентного генератора экспериментальным путем необходимо выполнить опыты холостого хода и короткого замыкания.
При проведении опыта холостого хода от активного двухполюсника отключают сопротивление R1, ток I1 в котором необходимо определить. К зажимам двухполюсника 1-1′ подключают вольтметр и измеряют напряжение холостого хода Uxx (рис. 4.11).
При выполнении опыта короткого замыкания соединяют проводником зажимы 1-1′ активного двухполюсника и измеряют амперметром ток короткого замыкания I1кз (рис. 4.12).

Рис. 4.11 Рис. 4.12

5. Электрические цепи однофазного
переменного тока

5.1. Основные определения

Переменным называется электрический ток, величина и направление которого изменяются во времени.
Область применения переменного тока намного шире, чем постоянного. Это объясняется тем, что напряжение переменного тока можно легко понижать или повышать с помощью трансформатора, практически в любых пределах. Переменный ток легче транспортировать на большие расстояния. Но физические процессы, происходящие в цепях переменного тока, сложнее, чем в цепях постоянного тока из-за наличия переменных магнитных и электрических полей.
Значение переменного тока в рассматриваемый момент времени называют мгновенным значением и обозначают строчной буквой i .
Мгновенный ток называется периодическим, если значения его повторяются через одинаковые промежутки времени

Наименьший промежуток времени, через который значения переменного тока повторяются, называется периодом.
Период T измеряется в секундах. Периодические токи, изменяющиеся по синусоидальному закону, называются синусоидальными .
Мгновенное значение синусоидального тока определяется по формуле

где Im — максимальное, или амплитудное . значение тока.
Аргумент синусоидальной функции называют фазой; величину φ, равную фазе в момент времени t = 0, называют начальной фазой. Фаза измеряется в радианах или градусах. Величину, обратную периоду, называют частотой. Частота f измеряется в герцах.

В Западном полушарии и в Японии используется переменный ток частотой 60 Гц, в Восточном полушарии — частотой 50 Гц .
Величину называют круговой, или угловой, частотой. Угловая частота измеряется в рад/c.
Если у синусоидальных токов начальные фазы при одинаковых частотах одинаковы, говорят, что эти токи совпадают по фазе. Если неодинаковы по фазе, говорят, что токи сдвинуты по фазе. Сдвиг фаз двух синусоидальных токов измеряется разностью начальных фаз

С помощью осциллографа можно измерить амплитудное значение синусоидального тока или напряжения.
Амперметры и вольтметры электромагнитной системы измеряют действующие значения переменного тока и напряжения.
Действующим значением переменного тока называется среднеквадратичное значение тока за период. Действующее значение тока (для синусоиды )

Аналогично определяются действующие значения ЭДС и напряжений

Действующие значения переменного тока, напряжения, ЭДС меньше максимальных в √2 раз.
Законы Ома и Кирхгофа справедливы для мгновенных значений токов и напряжений.
Закон Ома для мгновенных значений:

Законы Кирхгофа для мгновенных значений:

5.2 Изображения синусоидальных функций времени
в векторной форме

При расчете электрических цепей часто приходится складывать или вычитать величины токов или напряжений, являющиеся синусоидальными функциями времени. Графические построения или тригонометрические преобразования в этом случае могут оказаться слишком громоздкими.
Задача упрощается, если представить наши синусоидальные функции в векторной форме. Имеем синусоидальную функцию . Известно, что проекция отрезка, вращающегося вокруг оси с постоянной угловой скоростью, на любую линию, проведенную в плоскости вращения, изменяется по синусоидальному закону.

Пусть отрезок прямой длиной I m начинает вращаться вокруг оси 0 из положения, когда он образует с горизонтальной осью угол φ, и вращается против часовой стрелки с постоянной угловой скоростью ω. Проекция отрезка на вертикальную ось в начальный момент времени . Когда отрезок повернется на угол α 1. проекция его . Откладывая углы α 1. α 2. на горизонтальной оси, а проекции отрезка прямой — на вертикальной оси, получим ряд точек синусоиды (рис. 6.1).

Пусть даны два синусоидальных тока: и

Нужно сложить эти токи и получить результирующий ток:

Представим синусоидальные токи i 1 и i 2 в виде двух радиус — векторов, длина которых равна в соответствующем масштабе I 1m и I 2m. Эти векторы расположены в начальный момент времени под углами φ 1 и φ 2 относительно горизонтальной оси. Сложим геометрически отрезки I 1m и I 2m. Получим отрезок, длина которого равна амплитудному значению результирующего тока I 3m. Отрезок расположен под углом φ 3 относительно горизонтальной оси. Все три отрезка вращаются вокруг оси 0 с постоянной угловой скоростью ω. Проекции отрезков на вертикальную ось изменяются по синусоидальному закону. Будучи остановленными для рассмотрения, данные отрезки образуют векторную диаграмму (рис. 5.2).
Векторная диаграмма — это совокупность векторов, изображающих синусоидальные напряжения, токи и ЭДС одинаковой частоты.

Необходимо отметить, что напряжение, ток и ЭДС — это скалярные, а не векторные величины.
Мы представляем их на векторной диаграмме в виде не пространственных, а временных радиус — векторов, вращающихся с одинаковой угловой скоростью.
Изображать на векторной диаграмме два вектора, вращающихся с различной угловой скоростью, бессмысленно.

Рис. 5.2
Положительным считается направление вращения векторов против часовой стрелки.
Векторные диаграммы используются для качественного анализа электрических цепей, а также при решении некоторых электротехнических задач.

5.3. Изображение синусоидальных функций времени
в комплексной форме

При расчетах цепей синусоидального тока используют символический метод расчета или метод комплексных амплитуд. В этом методе сложение двух синусоидальных токов заменяют сложением двух комплексных чисел, соответствующих этим токам.
Из курса математики известно, что комплексное число может быть записано в показательной или алгебраической форме:

где с — модуль комплексного числа;
φ- аргумент;
a — вещественная часть комплексного числа;
b — мнимая часть;
j — мнимая единица, j = √-1.

С помощью формулы Эйлера можно перейти от показательной формы записи к алгебраической.

От алгебраической формы записи переходят к показательной форме с помощью формул:

Комплексное число может быть представлено в виде радиус — вектора в комплексной плоскости. Вектор длиной, равной модулю c . расположен в начальный момент времени под углом φ относительно вещественной оси (рис.6.3).

Умножим комплексное число на множитель .
Радиус — вектор на комплексной плоскости повернется на угол β .
Множитель называется поворотным.

Если , то вектор, умноженный на , превратится во вращающийся со скоростью ω радиус — вектор.
Выражение называется комплексной функцией времени.
Применительно к напряжению, получим — комплексную функцию времени для напряжения.
— комплексная амплитуда напряжения (исходное положение вектора в комплексной плоскости). Определим, чему равна мнимая часть комплексной функции времени для напряжения.

Мгновенное синусоидальное напряжение (ток, ЭДС) является мнимой частью соответствующей комплексной функции времени.

Замечание . В электротехнике над символами, изображающими комплексные напряжения, токи, ЭДС, принято ставить точку.
Синусоидальные функции времени могут быть представлены векторами в комплексной плоскости, вращающимися против часовой стрелки с постоянной угловой скоростью ω . Проекция вектора на мнимую ось изменяется по синусоидальному закону.

Сложение синусоидальных токов заменим сложением комплексных амплитуд, соответствующих этим токам.

Амплитуда результирующего тока , начальная фаза — .

Мгновенное значение результирующего тока

Законы Ома и Кирхгофа в комплексной форме:

— первый закон Кирхгофа; (6.5)

— второй закон Кирхгофа. (6.6)

5.4 Сопротивление в цепи синусоидального тока

Если напряжение подключить к сопротивлению R, то через него протекает ток

Анализ выражения (5.7) показывает, что напряжение на сопротивлении и ток, протекающий через него, совпадают по фазе.
Формула (5.7) в комплексной форме записи имеет вид

где и — комплексные амплитуды тока и напряжения.
Комплексному уравнению (5.8) соответствует векторная диаграмма (рис. 5.4).

Из анализа диаграммы следует, что векторы напряжения и тока совпадают по направлению.

Сопротивление участка цепи постоянному току называется омическим, а сопротивление того же участка переменному току — активным сопротивлением.

Рис.5.4
Активное сопротивление больше омического из-за явления поверхностного эффекта. Поверхностный эффект заключается в том, что ток вытесняется из центральных частей к периферии сечения проводника.

5.5 Индуктивная катушка в цепи синусоидального тока

Сначала рассмотрим идеальную индуктивную катушку, активное сопротивление которой равно нулю. Пусть по идеальной катушке с индуктивностью L протекает синусоидальный ток . Этот ток создает в индуктивной катушке переменное магнитное поле, изменение которого вызывает в катушке ЭДС самоиндукции

Эта ЭДС уравновешивается напряжением, подключенным к катушке: u = e L = 0.

Таким образом, ток в индуктивности отстает по фазе от напряжения на 90 o из-за явления самоиндукции.
Уравнение вида (6.10) для реальной катушки, имеющей активное сопротивление R, имеет следующий вид:

Анализ выражения (6.11) показывает, что ЭДС самоиндукции оказывает препятствие (сопротивление) протеканию переменного тока, из-за чего ток в реальной индуктивной катушке отстает по фазе от напряжения на некоторый угол φ (0 o < φ < 90 o ), величина которого зависит от соотношения R и L. Выражение (6.11) в комплексной форме записи имеет вид:

где Z L — полное комплексное сопротивление индуктивной катушки ;
ZL — модуль комплексного сопротивления;
— начальная фаза комплексного сопротивления;
— индуктивное сопротивление (фиктивная величина, характеризующая реакцию электрической цепи на переменное магнитное поле).
Полное сопротивление индуктивной катушки или модуль комплексного сопротивления

Комплексному уравнению (6.12) соответствует векторная диаграмма (рис.5.5).

Из анализа диаграммы видно, что вектор напряжения на индуктивности опережает вектор тока на 90 o.
В цепи переменного тока напряжения на участках цепи складываются не арифметически, а геометрически.
Если мы поделим стороны треугольника напряжений на величину тока I m. то перейдем к подобному треугольнику сопротивлений (рис. 5.6).

Из треугольника сопротивлений получим несколько формул:
; ;
Рис. 5.6

5.6 Емкость в цепи синусоидального тока

Если к конденсатору емкостью C подключить синусоидальное напряжение, то в цепи протекает синусоидальный ток

Из анализа выражений 5.13 следует, что ток опережает напряжение по фазе на 90 o.

Выражение (5.13) в комплексной форме записи имеет вид:

где — емкостное сопротивление, фиктивная расчетная величина, имеющая размерность сопротивления.

Если комплексное сопротивление индуктивности положительно
, то комплексное сопротивление емкости отрицательно

На рис. 6.7 изображена векторная диаграмма цепи с емкостью.
Вектор тока опережает вектор напряжения на 90 o.

5.7. Последовательно соединенные реальная индуктивная
катушка и конденсатор в цепи синусоидального тока

Катушка с активным сопротивлением R и индуктивностью L и конденсатор емкостью С включены последовательно (рис.5.8) . В схеме протекает синусоидальный ток

Определим напряжение на входе схемы.
В соответствии со вторым законом Кирхгофа,

Подставим эти формулы в уравнение (5.15). Получим:

Из выражения (5.16) видно: напряжение в активном сопротивлении совпадает по фазе с током, напряжение на индуктивности опережает по фазе ток на 90 o. напряжение по емкости отстает по фазе от тока на 90 o.
Запишем уравнение 5.16) в комплексной форме:

Поделим левую и правую части уравнения (6.17) на √2.
Получим уравнение для комплексов действующих значений токов и напряжений

где — комплексное сопротивление цепи;
— модуль комплексного сопротивления, или полное сопротивление цепи;
— начальная фаза комплексного сопротивления.

При построении векторных диаграмм цепи рассмотрим три случая.

  1. XL > XC. цепь носит индуктивный характер. Векторы напряжений на индуктивности и емкости направлены в противоположные стороны, частично компенсируют друг друга. Вектор напряжения на входе схемы опережает вектор тока (рис5.9).
  2. Индуктивное сопротивление меньше емкостного. Вектор напряжения на входе схемы отстает от вектора тока. Цепь носит емкостный характер (рис.5.10).
  3. Индуктивное и емкостное сопротивления одинаковы. Напряжения на индуктивности и емкости полностью компенсируют друг друга. Ток в цепи совпадает по фазе с входным напряжением. В электрической цепи наступает режим резонансного напряжения (рис.5.11) .

Ток в резонансном режиме достигает максимума, так как полное сопротивление (z) цепи имеет минимальное значение.

Условие возникновения резонанса: , отсюда резонансная частота равна

Из формулы следует, что режима резонанса можно добиться следующими способами:

  1. изменением частоты;
  2. изменением индуктивности;
  3. изменением емкости.

В резонансном режиме входное напряжение равно падению напряжения в активном сопротивлении. На индуктивности и емкости схемы могут возникнуть напряжения, во много раз превышающие напряжение на входе цепи. Это объясняется тем, что каждое напряжение равно произведению тока I 0 (а он наибольший), на соответствующее индуктивное или емкостное сопротивление (а они могут быть большими).

Рис. 5.9 Рис. 5.10 Рис. 5.11

5.8. Параллельно соединенные индуктивность, емкость
и активное сопротивление в цепи синусоидального тока

К схеме на рис. 5.12 подключено синусоидальное напряжение . Схема состоит из параллельно включенных индуктивности, емкости и активного сопротивления.
Определим ток на входе схемы.

В соответствии с первым законом Кирхгофа:
, (6.19)
где
— активная проводимость.

Подставим эти формулы в уравнение (5.19). Получим:

где — индуктивная проводимость;
— емкостная проводимость.

Из уравнения (5.20) видно, что ток в ветви с индуктивностью отстает по фазе от напряжения на 90 o. ток в ветви с активным сопротивлением совпадает по фазе с напряжением, ток в ветви с емкостью опережает по фазе напряжение на 90 o.
Запишем уравнение (6.20) в комплексной форме.

где — комплексная проводимость;
— полная проводимость;
— начальная фаза комплексной проводимости.

Построим векторные диаграммы, соответствующие комплексному уравнению (5.21).

Рис. 5.13 Рис. 5.14 Рис. 5.15

В схеме на рис. 5.12 может возникнуть режим резонанса токов. Резонанс токов возникает тогда, когда индуктивная и емкостная проводимости одинаковы. При этом индуктивный и емкостный токи, направленные в противоположные стороны, полностью компенсируют друг друга. Ток в неразветвленной части схемы совпадает по фазе с напряжением.
Из условия возникновения резонанса тока получим формулу для резонансной частоты тока

В режиме резонанса тока полная проводимость цепи — минимальна, а полное сопротивление — максимально. Ток в неразветвленной части схемы в резонансном режиме имеет минимальное значение. В идеализированном случае R = 0,

Ток в неразветвленной части цепи I = 0. Такая схема называется фильтр — пробкой.

5.9. Резонансный режим в цепи, состоящей
из параллельно включенных реальной индуктивной
катушки и конденсатора

Комплексная проводимость индуктивной ветви

где — активная проводимость индуктивной катушки;
— полное сопротивление индуктивной катушки;
— индуктивная проводимость катушки;
— емкостная проводимость второй ветви.

В режиме резонансов токов справедливо уравнение:

Из этого уравнения получим формулу для резонанса частоты

На рисунке 5.16 изображена векторная диаграмма цепи в резонансном режиме.

Вектор тока I 2 опережает вектор напряжения на 90 o. Вектор тока I 1 отстает от вектора напряжения на угол φ,

Разложим вектор тока I 1 на две взаимно перпендикулярные составляющих, одна из них, совпадающая с вектором напряжения, называется активной составляющей тока Iа1. другая — реактивной составляющей тока Iр1 .

В режиме резонанса тока реактивная составляющая тока Iр1 и емкостный ток I 2. направленные в противоположные стороны, полностью компенсируют друг друга, активная составляющая тока Iа1 совпадает по фазе с напряжением (рис. 5.17). Ток I в неразветвленной части схемы совпадает по фазе с напряжением.

5.10. Мощность в цепи синусоидального тока

Мгновенной мощностью называют произведение мгновенного напряжения на входе цепи на мгновенный ток.
Пусть мгновенные напряжение и ток определяются по формулам:

Среднее значение мгновенной мощности за период

Из треугольника сопротивлений , а .

Получим еще одну формулу:

Среднее арифметическое значение мощности за период называют активной мощностью и обозначают буквой P.
Эта мощность измеряется в ваттах и характеризует необратимое преобразование электрической энергии в другой вид энергии, например, в тепловую, световую и механическую энергию.
Возьмем реактивный элемент (индуктивность или емкость). Активная мощность в этом элементе , так как напряжение и ток в индуктивности или емкости различаются по фазе на 90 o. В реактивных элементах отсутствуют необратимые потери электрической энергии, не происходит нагрева элементов.
Происходит обратимый процесс в виде обмена электрической энергией между источником и приемником. Для качественной оценки интенсивности обмена энергией вводится понятие реактивной мощности Q.
Преобразуем выражение (5.23) .

где — мгновенная мощность в активном сопротивлении;

— мгновенная мощность в реактивном элементе (в индуктивности или в емкости).
Максимальное или амплитудное значение мощности p 2 называется реактивной мощностью

где x — реактивное сопротивление (индуктивное или емкостное).
Реактивная мощность, измеряемая в вольтамперах реактивных, расходуется на создание магнитного поля в индуктивности или электрического поля в емкости. Энергия, накопленная в емкости или в индуктивности, периодически возвращается источнику питания.
Амплитудное значение суммарной мощности p = p 1 + p2 называется полной мощностью.
Полная мощность, измеряемая в вольтамперах, равна произведению действующих значений напряжения и тока:

где z — полное сопротивление цепи.
Полная мощность характеризует предельные возможности источника энергии. В электрической цепи можно использовать часть полной мощности

где — коэффициент мощности или «косинус «фи».

Коэффициент мощности является одной из важнейших характеристик электротехнических устройств. Принимают специальные меры к увеличению коэффициента мощности.
Возьмем треугольник сопротивлений и умножим его стороны на квадрат тока в цепи. Получим подобный треугольник мощностей (рис. 6.18).

Из треугольника мощностей получим ряд формул:

Рис.5.18
, .
При анализе электрических цепей символическим методом используют выражение комплексной мощности, равное произведению комплексного напряжения на сопряженный комплекс тока.
Для цепи, имеющей индуктивный характер (R-L цепи)

где
— комплекс напряжения;
— комплекс тока;
— сопряженный комплекс тока;
— сдвиг по фазе между напряжением и током.
, ток как в R-L цепи, напряжение опережает по фазе ток.

Вещественной частью полной комплексной мощности является активная мощность.
Мнимой частью комплексной мощности — реактивная мощность.
Для цепи, имеющей емкостной характер (R-С цепи), . Ток опережает по фазе напряжение.

Активная мощность всегда положительна. Реактивная мощность в цепи, имеющей индуктивный характер, — положительна, а в цепи с емкостным характером — отрицательна.

5.11. Баланс мощностей

Для схемы на рис.5.19 запишем уравнение по второму закону Кирхгофа. Умножим левую и правую части уравнения на сопряженный комплекс тока

где — результирующее реактивное сопротивление;
I 2 — квадрат модуля тока.

где — полная комплексная, активная и реактивная мощности источника питания.

где — активная и реактивная мощности, потребляемые элементами схемы.

Два комплексных числа равны, если равны по отдельности их вещественные и мнимые части, следовательно уравнение (6.24) распадается на два:

Полученные равенства выражают законы сохранения активных и реактивных мощностей.

5.12. Согласованный режим работы электрической цепи.
Согласование нагрузки с источником

В схеме на рис. 6.20
— полное, активное и реактивное сопротивления источника ЭДС,
— полное, активное и реактивное сопротивления нагрузки.
Активная мощность может выделяться только в активных сопротивлениях цепи переменного тока.
Активная мощность, выделяемая в нагрузке,

Активная мощность, развиваемая генератором

.
Коэффициент полезного действия для данной схемы:

Из формулы (5.26) видно, что выделяемая в нагрузке мощность будет максимальной, когда знаменатель минимален. Последнее имеет место при , т.е. при . Это означает, что реактивные сопротивления источника и нагрузки должны быть одинаковы по модулю и иметь разнородный характер. При индуктивном характере реактивного сопротивления источника реактивное сопротивление нагрузки должно быть емкостным и наоборот.

Установим условие, при котором от источника к нагрузке будет передаваться наибольшая мощность.

От источника к нагрузке передается наибольшая мощность, когда

Величина наибольшей мощности

Режим передачи наибольшей мощности от источника к нагрузке называется согласованным режимом, а подбор сопротивлений согласно равенствам (6.28) — согласованием нагрузки с источником.

В согласованном режиме

Половина мощности теряется внутри источника. Поэтому согласованный режим не используется в силовых энергетических цепях. Этот режим используют в информационных цепях, где мощности могут быть малыми, и решающими являются не соображения экономичности передачи сигнала, а максимальная мощность сигнала в нагрузке.

6. Трехфазные цепи

6.1. Основные определения

Трехфазная цепь является совокупностью трех электрических цепей, в которых действуют синусоидальные ЭДС одинаковой частоты, сдвинутые относительно друг друга по фазе на 120 o . создаваемые общим источником. Участок трехфазной системы, по которому протекает одинаковый ток, называется фазой.

Трехфазная цепь состоит из трехфазного генератора, соединительных проводов и приемников или нагрузки, которые могут быть однофазными или трехфазными.

Трехфазный генератор представляет собой синхронную машину. На статоре генератора размещена обмотка, состоящая из трех частей или фаз, пространственно смещенных относительно друг друга на 120 o . В фазах генератора индуктируется симметричная трехфазная система ЭДС, в которой электродвижущие силы одинаковы по амплитуде и различаются по фазе на 120 o . Запишем мгновенные значения и комплексы действующих значений ЭДС.

Сумма электродвижущих сил симметричной трехфазной системы в любой момент времени равна нулю.

На схемах трехфазных цепей начала фаз обозначают первыми буквами латинского алфавита ( А, В, С ), а концы — последними буквами ( X, Y, Z ). Направления ЭДС указывают от конца фазы обмотки генератора к ее началу.
Каждая фаза нагрузки соединяется с фазой генератора двумя проводами: прямым и обратным. Получается несвязанная трехфазная система, в которой имеется шесть соединительных проводов. Чтобы уменьшить количество соединительных проводов, используют трехфазные цепи, соединенные звездой или треугольником.

6.2. Соединение в звезду. Схема, определения

Если концы всех фаз генератора соединить в общий узел, а начала фаз соединить с нагрузкой, образующей трехлучевую звезду сопротивлений, получится трехфазная цепь, соединенная звездой. При этом три обратных провода сливаются в один, называемый нулевым или нейтральным. Трехфазная цепь, соединенная звездой, изображена на рис. 7. 1.

Провода, идущие от источника к нагрузке называют линейными проводами, провод, соединяющий нейтральные точки источника Nи приемника N’ называют нейтральным (нулевым) проводом.
Напряжения между началами фаз или между линейными проводами называют линейными напряжениями. Напряжения между началом и концом фазы или между линейным и нейтральным проводами называются фазными напряжениями.
Токи в фазах приемника или источника называют фазными токами, токи в линейных проводах — линейными токами. Так как линейные провода соединены последовательно с фазами источника и приемника, линейные токи при соединении звездой являются одновременно фазными токами.

ZN — сопротивление нейтрального провода.

Линейные напряжения равны геометрическим разностям соответствующих фазных напряжений

На рис. 6.2 изображена векторная диаграмма фазных и линейных напряжений симметричного источника.

Из векторной диаграммы видно, что

При симметричной системе ЭДС источника линейное напряжение больше фазного
в √3 раз.

6.3. Соединение в треугольник. Схема, определения

Если конец каждой фазы обмотки генератора соединить с началом следующей фазы, образуется соединение в треугольник. К точкам соединений обмоток подключают три линейных провода, ведущие к нагрузке.
На рис. 6.3 изображена трехфазная цепь, соединенная треугольником. Как видно
из рис. 6.3, в трехфазной цепи, соединенной треугольником, фазные и линейные напряжения одинаковы.

Линейные и фазные токи нагрузки связаны между собой первым законом Кирхгофа для узлов а, b, с.

Линейный ток равен геометрической разности соответствующих фазных токов.
На рис. 7.4 изображена векторная диаграмма трехфазной цепи, соединенной треугольником при симметричной нагрузке. Нагрузка является симметричной, если сопротивления фаз одинаковы. Векторы фазных токов совпадают по направлению с векторами соответствующих фазных напряжений, так как нагрузка состоит из активных сопротивлений.

Из векторной диаграммы видно, что

I л = √3 I ф- при симметричной нагрузке.

Трехфазные цепи, соединенные звездой, получили большее распространение, чем трехфазные цепи, соединенные треугольником. Это объясняется тем, что, во-первых, в цепи, соединенной звездой, можно получить два напряжения: линейное и фазное. Во-вторых, если фазы обмотки электрической машины, соединенной треугольником, находятся в неодинаковых условиях, в обмотке появляются дополнительные токи, нагружающие ее. Такие токи отсутствуют в фазах электрической машины, соединенных по схеме «звезда». Поэтому на практике избегают соединять обмотки трехфазных электрических машин в треугольник.

6.4. Расчет трехфазной цепи, соединенной звездой

Трехфазную цепь, соединенную звездой, удобнее всего рассчитать методом двух узлов.
На рис. 7.5 изображена трехфазная цепь при соединении звездой. В общем случае сопротивления фаз нагрузки неодинаковы (Z A ≠ ZB ≠ ZC )

Нейтральный провод имеет конечное сопротивление Z N.
В схеме между нейтральными точками источника и нагрузки возникает узловое напряжение или напряжение смещения нейтрали.
Это напряжение определяется по формуле (6.2).

Фазные токи определяются по формулам (в соответствии с законом Ома для активной ветви):

Ток в нейтральном проводе

1. Симметричная нагрузка. Сопротивления фаз нагрузки одинаковы и равны некоторому активному сопротивлению Z A = ZB = ZC = R.
Узловое напряжение

потому что трехфазная система ЭДС симметрична, .

Напряжения фаз нагрузки и генератора одинаковы:

Фазные токи одинаковы по величине и совпадают по фазе со своими фазными напряжениями. Ток в нейтральном проводе отсутствует

В трехфазной системе, соединенной звездой, при симметричной нагрузке нейтральный провод не нужен.

На рис. 6.6 изображена векторная диаграмма трехфазной цепи для симметричной нагрузки.

2. Нагрузка несимметричная. RA < RB = RC. но сопротивление нейтрального провода равно нулю: Z N = 0. Напряжение смещения нейтрали

Фазные напряжения нагрузки и генератора одинаковы

Фазные токи определяются по формулам

Вектор тока в нейтральном проводе равен геометрической сумме векторов фазных токов.

На рис. 6.7 приведена векторная диаграмма трехфазной цепи, соединенной звездой, с нейтральным проводом, имеющим нулевое сопротивление, нагрузкой которой являются неодинаковые по величине активные сопротивления.

3. Нагрузка несимметричная, R A < RB = RC. нейтральный провод отсутствует,

В схеме появляется напряжение смещения нейтрали, вычисляемое по формуле:

Система фазных напряжений генератора остается симметричной. Это объясняется тем, что источник трехфазных ЭДС имеет практически бесконечно большую мощность. Несимметрия нагрузки не влияет на систему напряжений генератора.
Из-за напряжения смещения нейтрали фазные напряжения нагрузки становятся неодинаковыми.
Фазные напряжения генератора и нагрузки отличаются друг от друга. При отсутствии нейтрального провода геометрическая сумма фазных токов равна нулю.

На рис. 6.8 изображена векторная диаграмма трехфазной цепи с несимметричной нагрузкой и оборванным нейтральным проводом. Векторы фазных токов совпадают по направлению с векторами соответствующих фазных напряжений нагрузки. Нейтральный провод с нулевым сопротивлением в схеме с несимметричной нагрузкой выравнивает несимметрию фазных напряжений нагрузки, т.е. с включением данного нейтрального провода фазные напряжения нагрузки становятся одинаковыми.
Рис. 6.8

6.5. Мощность в трехфазных цепях

Трехфазная цепь является обычной цепью синусоидального тока с несколькими источниками.
Активная мощность трехфазной цепи равна сумме активных мощностей фаз

Формула (6.5) используется для расчета активной мощности в трехфазной цепи при несимметричной нагрузке.
При симметричной нагрузке:

При соединении в треугольник симметричной нагрузки

При соединении в звезду

В обоих случаях .

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, «мысленный эксперимент» фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей «мысленных экспериментов» является обман слушателя или читателя путем замены настоящего физического эксперимента его «куклой» — фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, «мысленными экспериментами» привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие «фантики» от настоящих ценностей.

Релятивисты и позитивисты утверждают, что «мысленный эксперимент» весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: «Если факт не соответствует теории — измените факт» (В другом варианте » — Факт не соответствует теории? — Тем хуже для факта»).

Максимально, на что может претендовать «мысленный эксперимент» — это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

Понятие «мысленный эксперимент» придумано специально спекулянтами — релятивистами для шулерской подмены реальной проверки мысли на практике (эксперимента) своим «честным словом». Подробнее читайте в FAQ по эфирной физике .

НОВОСТИ ФОРУМА
Рыцари теории эфира

27.04.2016 — 07:59: СОВЕСТЬ — Conscience -> [center][b]в Сети напомнили о роли [BB]граждан Израиля и офицеров ЦАХАЛ[/BB] [RB]в сожжении одесситов [/center]

4.02.2016, Киев, Семен Дорошенко

Украинский политолог и блогер Владимир Корнилов напомнил о загадочном участии граждан Израиля- офицеров ЦАХАЛ — в трагических событиях Одесской Хатыни 2 мая 2014 года.

Об этом Корнилов написал на своей страничке в соцсети.

«Сразу после Одесской Хатыни я сообщил о любопытных израильтянах, принявших прямое участие в событиях 2 мая. Если помните, я сообщил о видео, которое британский журналист записал в центре Одессы, используя Гугл-очки. В толпе украинских нацистов тогда появилась группа англоязычных иностранцев, один из которых заявил журналисту, что эта группа прямо участвует в этих событиях (так открыто и заявил). Причем говорил на бойком английском, сообщил, что он гражданин Израиля и США. И вдруг он осознал, что его записывают на видео, стушевался, английский его вдруг резко «испортился» и он ретировался. Его руки были в резиновых перчатках, а его подельники держали в руках какие-то пробирки, бутылочки, пакеты», — написал политолог.

По словам Корнилова, тогда его сообщение было воспринято с недоверием.

«Когда я сообщил об этом видео, на меня вдруг набросились с разных сторон. Сначала мне заявили, что я все выдумал и никакого видео с израильтянами не было. Когда я в итоге предъявил это видео, где парень однозначно называет себя гражданином Израиля, мне стали кричать: мол, мало ли что он брякнул, и вообще, он скорее всего араб, а не еврей (как будто бы я где-то что-то говорил о его этносе)», — вспоминает политолог.

Теперь же Владимир Корнилов решил вернуться к данной теме, в связи с чем публикует у себя в фейсбуке фотографии загадочных израильтян, принимавших участие в одесской бойне.

Один из них — некий Гонен Сибони. На первом из опубликованных Корниловым фото он в Одессе 2 мая 2014-го. А на трех других — он в 2008 г.
[center] [/center]
[center][img]http://bourabai.ru/forum/img/12715507. jpg[/img][/center]
[center] [/center]
«Ну-ка, ну-ка, какая у него тут форма? Палестинская или таки ЦАХАЛ?», — пишет Корнилов.
[center] [/center]
[center][img]http://bourabai.ru/forum/img/12744707.jpg[/img][/center]

[center] [/center]
[center][img]http://bourabai.ru/forum/img/12705549.jpg[/img][/center]
[center] [/center]
[center][img]http://bourabai.ru/forum/img/12715424.jpg[/img][/center]

Среди множества вопросов, на которые Корнилов, по его словам, хотел бы получить ответ, например, такие:

«Почему они случайно разгуливали по Одессе с медицинским снаряжением, в резиновых перчатках, откуда они знали заранее о том, что будут раненые и убитые? Или почему сей боец вдруг резко забыл английский, когда понял, что его записывают?».

Владимир Корнилов вспоминает: «Тогда, в мае 2014 г. я рекомендовал обязательно допросить сих бойцов ЦАХАЛ, дабы прояснить их роль в событиях (еще раз подчеркну: Сибони сам сказал журналисту, что принимает участие в событиях!). В конце концов, это ведь украинская СБУ потом заявляла, что при сожжении русских в Одессе использовали некое странное химическое вещество. Резонно в этой связи задать вопрос израильтянами, что за вещества в их колбах и бутылочках, верно ведь? И как вы думаете, кто-то допросил сего активиста? Ой, сомневаюсь.
Сам он в сети ВКонтакте написал уже 7 мая 2014 г. «Дома!» (надо полагать, быстро был вывезен в Израиль). И на этом он затих. И молчит по сей день. Не любопытно ли?», — заключает он.
[center] [/center]
[center][Youtube]l2HnWPdd43M[/Youtube][/center]
[center] [/center]
Источник: http://www.politnavigator.net/tajjny-odesskojj-khatyni-v-seti-napomnili-o-roli-grazhdan-izrailya-i-oficerov-caakhal-v-sozhzhenii-o dessitov.html
Отправлено 07:59, 27.04.2016 г.» target=»_top»>Проблема государственного терроризма — Карим_Хайдаров.
25.04.2016 — 07:47: СОВЕСТЬ — Conscience ->
Продолжающаяся серия жестоких убийств банкиров и их семей (устранение свидетелей) показывает, что мировая фи Отправлено 07:47, 25.04.2016 г.» target=»_top»>КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ — Карим_Хайдаров.
24.04.2016 — 21:11: АСТРОФИЗИКА — Astrophysics -> [Quote]
[i]Роевые падения, это вероятнее всего куски шлаков. Исходя из этого можно утверждать, что это комета образовалась первоначально из крупных тел собиравших пыль, газ, снег. Отправлено 21:11, 24.04.2016 г.» target=»_top»>Комета 67Р/Чурюмова-Герасименко и проблема ее происхождения — Евгений_Дмитриев.
20.04.2016 — 12:33: ЭКОЛОГИЯ — Ecology -> [center] [/center]
[center]Куда исчезли ГОСТЫ?[/center]
[center] [/center]
[center][Youtube]3mtGfF0c5zg[/Youtube][/center]
Отправлено 12:33, 20.04.2016 г.» target=»_top»>ЭКОЛОГИЯ ДЛЯ ВСЕХ — Карим_Хайдаров.
17.04.2016 — 22:31: СОВЕСТЬ — Conscience -> [center]Никита Михалков: разговор о внешних и внутренних угрозах России[/center]
[center] [/center]
[center][img]http://4.bp.blogspot.com/-LUgzlFnsf9s/UDdUfQh2wtI/AAAAAAAAGLY/8stGFnsowOQ/s1600/RU_Beef_Cuts.png[/img][/center]
[center] [/center]
[center][Youtube]SbmiMCukOtA[/Youtube][/center]
[center] [/center]
[center][img]http://ic.pics.livejournal.com/haile_rastafari/17120470/51224/51224_original.jpg[/img][/center]
[center] [/center]
Отправлено 22:31, 17.04.2016 г.» target=»_top»>РУССКИЙ МИР — Карим_Хайдаров.
09.04.2016 — 06:59: АСТРОФИЗИКА — Astrophysics -> Форум Института океанологии
http://www.oceanographers.ru/forum/viewtopic.php?f=4&t=9249

Воды озер, морей и океанов северного по­­­­­­­­­лушария вращаются против часовой ­с­т­­р­е­л­к­и, а воды южного полушария­ в­ра­­ща­ют­ся­ по­ ч­асовой стрелке,­ обра­зуя­ ­гиг­ант­ски­е вод­ово­роты.

Основной причиной вращения водоворотов являются местные ветра.
И чем выше скорость ветров тем выше скорость вращения водоворотов и как следствие, выше центробежная сила водоворотов, благодаря чему повышается уровень вод морей и океанов.
А чем ниже центробежная сила водоворотов, тем ниже уровень вод морей и океанов.

Скорость течений, по периметру морей и океанов не везде одинакова и зависит от глубины побережья. В мелководной части моря скорость течений увеличивается, а в глубоководной части моря уменьшается.
Сезонные колебания уровня вод наблюдаю­тся не по всему побережью морей и океан­ов, а только в тех побережьях где ­высокая ­угловая скорость течений и как следствие, высокая центробежная сила воды. (Центробежная сила F = v/r).
На прямолинейных побережьях, где течения не обладают угловой скоростью, уровень вод не повышается.

Воды Финского залива вращаются против часовой стрелки, образуя водоворот в виде элипса.
И когда, сезонные, юго- западные ветры раскручивают водоворот до 5 км/час, уровень вод в Финском заливе повышается до 30 см..
Максимальная скорость течения на Земле составляет 30 км/час.
http://goo.gl/eYVTo6
http://www.fesk.ru/wetlands/1.html
http://www.okeanavt.ru/taini-okeana/1066-mif-o-srednem-urovne.html
Продолжение: Форум ­НИЯУ МИФИ
https://mephi.ru/communication/forum/talk/forum13/topic5498/messages/ Отправлено 06:59, 09.04.2016 г.» target=»_top»>Сезонные колебания уровня вод морей и океанов — Юсуп_Хизиров.
28.03.2016 — 16:42: СОВЕСТЬ — Conscience ->
Здравствуйте, уважаемая Татьяна Вячеславовна!

Премного благодарен Вам за Ваш общественно-просветительский труд вообще,
а, в частности, за репост ста Отправлено 16:42, 28.03.2016 г.» target=»_top»>ПРАВОСУДИЯ.НЕТ — Карим_Хайдаров.
17.03.2016 — 11:20: СЕЙСМОЛОГИЯ — Seismology -> Запасы воды под Землёй — Карим_Хайдаров.
15.03.2016 — 16:15: ЦИТАТЫ ЧУЖИХ ФОРУМОВ — Outside Quotings -> — Дорогой Владимир Владимирович, жизнь в той или иной форме на Земле и Вселенной в целом была всегда.
Вопрос, ставимый как бы учеными о времени возникновения жизни на Земле, а в особенности "абиогенезе" — возникновении жизни из минерального материала, навеянный библейской мифологией и алогичностью слабоумных людей, мнящих себя учеными, некорректен априори (топик — http://bourabai.ru/forum/index.php?fid=107&id=1071005).
И тут не есть противопоставление: эволюционизм — креационизм, но понимание того, что обе эти альтенативы — абсурдны.
Обе они исходят из того, что существование Вселенной началось в какой-то конечный, конкретный момент.
Об этом говорит ныне "официальная", а на самом деле криминальная наука, "разводящая" простофиль, об этом проповедует и абсолютно бессовестная церковь (любая из них).
На самом деле, согласно реальной логике, Вселенная (как и универсум в логике) есть особый объект, включающий в себя все остальные, а значит, не имеющий границ во времени и пространстве.
Знали это еще античные люди (как в Египте и Греции, так и в Китае и Индии).
Раз так, то и существование жизни во Вселенной — вечно.
Оно не вечно в конкретном месте, например, на Земле или пробирке.
Гены (биоинформация в виде ДНК, РНК и пр.) существуют почти везде во Вселенной в том или ином обличье, и только ждут удобного момента для своей реализации.
Их разносчиками являются кометы.
Это, кстати, уже фактографически определил наш коллега Е.В. Дмитриев http://bourabai.kz/dmitriev/tm06-dmitriev.pdf
Как только на Земле возникли условия для какой-то конкретной формы жизни, — так она и начала развиваться за счет явления панспермии, то есть засева биоматериала из комет (топик — http://bourabai.ru/forum/index.php?fid=107&id=1071000).
К примеру, в мезозое царствовали динозавры (рептилии). Это только потому, что именно для этих тварей тогда были подходящие условия.
Что сейчас рептилий нет? — Да сколько угодно. От крокодилов и варанов острова Комодо до черепах, ящериц и змей.
Просто они сегодня занимают скромную нишу в связи с тем, что ныне более комфортные условия для иных форм жизни.
То же самое для млекопитающих и цветковых. Что, их не было в мезозое? — Да сколько угодно! Только тогда для них был не климат.
Кстати, только слабоумные могут считать, что Земля возникла 4,6 млрд лет назад, основываясь на "изотопном возрасте" горных пород.
Для людей, имеющих логику, ясно, что 4,6 млрд лет — это время, прошедшее от формирования данного твердого минерала из других минералов, по каким-то причинам бывших в то время в расплаве.
Но никак не возникновение, рождение из ничего или мифического протопланетного облака.
Я уже излагал свою точку зрения на сей вопрос в работе "Происхождение Солнца и планет" http://bourabai.kz/solar.htm

Отправлено 16:15, 15.03.2016 г.» target=»_top»>ВЫМИРАНИЕ ДИНОЗАВРОВ на www.nkj.ru — Карим_Хайдаров.
23.02.2016 — 20:34: Беседка — Chatter -> Водовороты Средиземное море http://goo.gl/G9l71A
Также через Гибралтарскии пролив в Средиземное море движется приливная волна, отражаемая Североатлантическим планетарным водоворотом.
А согласно &quot;Лунной теории о приливах&quot;, приливная волна должна двигаться с востока на запад, вслед за Луной.

B северо-восточной части Тихого океана вращается Аля&#769;скинский водоворот прецессируя отражающий приливную волну в сторону залива Кука, благодаря чему образуются приливы высотой 9 метров.
http://goo.gl/nHXaQr
http://goo.gl/QkumFS
http://goo.gl/QoUvVy
http://goo.gl/THgCE4

Схема вращения приливной волны по периметру Северного моря http://goo.gl/JvpKwu

Схема раскручивания вод Гудзонова залива, приливной волной, прецессируя отражаемой Североатлантическим планетарным водоворотом
http://goo.gl/QoUvVy
http://goo.gl/R1hx0H
Отправлено 20:34, 23.02.2016 г.» target=»_top»>Приливы и отливы — Юсуп_Хизиров.
19.02.2016 — 05:38: ФИЗИКА ЭФИРА — Aether Physics -> На днях произошло очередное триумфальное подтверждение теории Эйнштейна.
Там и волны и черные дыры, полный фарш. Мой простой вопрос &quot;А ч Отправлено 05:38, 19.02.2016 г.» target=»_top»>Скорость распространения гравитации — Карим_Хайдаров.