Схема работы парогазовой установки

Схема работы парогазовой установки

Парогазовая установка (англ. Combined Cycle Gas Turbine, CCGT) — электрогенерирующая станция, служащая для производства .

Парогазовая установка содержит два отдельных. и. В газотурбинной установке турбину вращают газообразные продукты сгорания топлива. Топливом может служить как. так и продукты промышленности (). На одном валу с турбиной находится. который за счет вращения ротора вырабатывает. Проходя через газовую турбину, продукты сгорания отдают лишь часть своей энергии и на выходе из неё, когда их уже близко к наружному и работа не может быть ими совершена, все ещё имеют высокую температуру. С выхода газовой турбины продукты сгорания попадают в паросиловую установку, в. где нагревают воду и образующийся. Температура продуктов сгорания достаточна для того, чтобы довести пар до состояния, необходимого для использования в паровой турбине ( дымовых газов около 500 °C позволяет получать при около 100 ). Паровая турбина приводит в действие второй (схема multi-shaft).

Широко распространены парогазовые установки, у которых паровая и газовая турбины находятся на одном валу, в этом случае используется только один, чаще всего двухприводный генератор (схема single-shaft). Такая установка может работать как в комбинированном, так и в простом газовом цикле с остановленной паровой турбиной. Также часто пар с двух блоков ГТУ—котёл-утилизатор направляется в одну общую паросиловую установку.

Иногда парогазовые установки создают на базе существующих старых паросиловых установок (схема topping). В этом случае уходящие газы из новой газовой турбины сбрасываются в существующий паровой котел, который соответствующим образом модернизируется. КПД таких установок, как правило, ниже, чем у новых парогазовых установок, спроектированных и построенных «с нуля».

На установках небольшой мощности обычно эффективнее, чем лопаточная радиальная или осевая. и есть предложение применять современные паровые машины в составе ПГУ .

  • Парогазовые установки позволяют достичь электрического КПД более 60 %. Для сравнения, у работающих отдельно паросиловых установок КПД обычно находится в пределах 33-45 %, для газотурбинных установок — в диапазоне 28-42 %
  • Низкая стоимость единицы установленной мощности
  • Парогазовые установки потребляют существенно меньше воды на единицу вырабатываемой электроэнергии по сравнению с паросиловыми установками
  • Короткие сроки возведения (9-12 мес.)
  • Нет необходимости в постоянном подвозе топлива ж/д или морским транспортом
  • Компактные размеры позволяют возводить непосредственно у потребителя (завода или внутри города), что сокращает затраты на ЛЭП и транспортировку эл. энергии
  • Более экологически чистые в сравнении с паротурбинными установками
  • Необходимость осуществлять фильтрацию воздуха, используемого для сжигания топлива.
  • Ограничения на типы используемого топлива. Как правило в качестве основного топлива используется природный газ, а резервного — дизельное топливо. Применения угля в качестве топлива возможно только в установках с внутрицикловой газификацией угля, что сильно удорожает строительство таких электростанций. Отсюда вытекает необходимость строительства недешевых коммуникаций транспортировки топлива — трубопроводов.
  • Сезонные ограничения мощности. Максимальная производительность в зимнее время.

Аргентинская — первая электростанция в Южной Америке, использующая парогазовый цикл

Несмотря на то, что преимущества парогазового цикла были впервые доказаны еще в 1950-х годах советским академиком. этот тип энергогенерирующих установок не получил в широкого применения. В были построены несколько экспериментальных ПГУ. Примером могут служить энергоблоки мощностью 170 МВт на и мощностью 250 МВт на. За последние 10 лет в России введены в эксплуатацию более 30-ти мощных парогазовых энергоблоков. Среди них:

По сравнению с Россией в странах Западной Европы и США парогазовые установки стали широко применяться раньше. На западных ТЭС, использующих в качестве топлива природный газ, установки такого типа используются гораздо чаще.

В компании сделали предположение о возможности использования парогазового цикла в автомобилях. Предлагается использовать выхлопные газы автомобиля для работы небольшой паровой турбины.

В идеи ПГУ было предложено использовать для получения. биомассы и проч.

  • 3ысин В. А. Комбинированные парогазовые установки и циклы, М. — Л.,1962.

Как отличаются КПД ГТУ и КПД ПГУ для отечественных и зарубежных электростанций

В статье рассказывается о том, как вычисляется КПД простейшей ГТУ, даны таблицы разных ГТУ и ПГУ для сравнения их КПД и других характеристик.

В области промышленного использования газотурбинных и парогазовых технологий Россия значительно отстала от пере­довых стран мира.

Мировые лидеры в производстве газовых и парогазовых энергоустановок большой мощности: GE, Siemens Wistinghouse, ABB — достигли значений единичной мощности газотурбинных установок 280—320 МВт и КПД свыше 40 %, с утилизационной паросиловой надстройкой в парогазовом цикле (называемом также бинарным) — мощности 430—480 МВт при КПД до 60 %. Если есть вопросы по надежности ПГУ — то читайте статью.

Эти впечатляющие цифры служат в качестве ори­ентиров при определении путей развития энергомашиностро­ения России.

Приведем пару простых формул, чтобы показать, что такое КПД газотурбинной установки:

Внутренняя мощность турбины:

  • Nт = Gух * Lт, где Lт – работа турбины, Gух – расход уходящих газов;

Внутренняя мощность ГТУ:

  • Ni гту = Nт – Nк, где Nк – внутренняя мощность воздушного компрессора;

Эффективная мощность ГТУ:

  • Nэф = Ni гту * КПД мех, КПД мех – КПД связанный с механическими потерями в подшипниках, можно принимать 0,99
  • Nэл = Ne * КПД эг, где КПД эг – КПД связанный с потерями в электрическом генераторе, можно принять 0,985

Располагаемая теплота топлива:

  • Q расп = Gтоп * Qрн, где Gтоп – расход топлива, Qрн – низшая рабочая теплота сгорания топлива

Абсолютный электрический КПД газотурбинной установки:

КПД ПГУ выше, чем КПД ГТУ так как в Парогазовой установке используется тепло уходящих газов ГТУ. За газовой турбиной устанавливается котел-утилизатор в котором тепло от уходящих газов ГТУ передается рабочему телу (питательной воде). сгенерированный пар отправляется в паровую турбину для генерации электроэнергии и тепла.

КПД ПГУ обычно представляют соотношением:

  • КПД пгу = КПД гту*B+(1-КПД гту*B)*КПД псу

B – степень бинарности цикла

КПД псу – КПД паросиловой установки

Qкс – теплота топлива, сжигаемого в камере сгорания газовой турбины

Qку – теплота дополнительного топлива сжигаемого в котле-утилизаторе

При этом отмечают, что если Qку = 0, то B = 1, т. е. установка является полностью бинар­ной.

(Visited 1 431 times, 4 visits today)

  • Газовая турбина V64.3A является одновальной, с холодным концевым приводом, с кольцевой камерой сгорания газовой турбиной промышленного […]
  • Описание и принцип работы антиобледенительных систем газотурбинных установок на примере газовых турбин General Electric серии LM Блоки […]
  • Описание газовой турбины Siemens SGT-800, технические характеристики и габаритные чертежи. Промышленная газовая турбина SGT-800, […]
  • Как последовательно осуществить пуск котла-утилизатора, статья взята из инструкции по эксплуатации КУ 3х давлений. Пуск […]
  • Основные параметры и характеристики [reklama1] Номинальная мощность – 18,17 МВт. Максимальная мощность – 25,43 МВт при […]
  • Описание паровой турбины Siemens SST PAC 300, ее технические характеристики, габаритные размеры и границы поставки. Паровая турбина […]

Парогазовыми называются энергетические установки, в которых теплота уходящих газов ГТУ прямо или косвенно используется для выработки электроэнергии в паротурбинном цикле. Отличается от паросиловых и газотурбинных установок повышенным КПД.

Принципиальная схема парогазовой установки (из лекции Фоминой).

компрессор Котёл утилизатор К

КС – камера сгорания

ГТ – газовая турбина

К – конденсационная паровая турбина

Парогазовая установка состоит из двух отдельныхустановок: паросиловой и газотурбинной.

В газотурбинной установке турбину вращают газообразные продукты сгорания топлива. Топливом может служить как природный газ, так и продукты нефтянойпромышленности (мазут, солярка). На одном валу с турбиной находится первый генератор, который за счет вращения ротора вырабатывает электрический ток. Проходя через газовую турбину, продукты сгорания отдают ей лишь часть своей энергии и на выходе из газотурбины все ещё имеют высокую температуру. С выхода из газотурбины продукты сгорания попадают в паросиловую установку, в котел-утилизатор, где нагревают воду и образующийся водяной пар. Температура продуктов сгорания достаточна для того, чтобы довести пар до состояния, необходимого для использования в паровой турбине (температура дымовых газов около 500 градусов по Цельсию позволяет получать перегретый пар при давлении около 100атмосфер). Паровая турбина приводит в действие второй электрогенератор.

Перспективы развития ПГУ (из учебника Аметистова).

1. Парогазовая установка — самый экономичный двигатель, используемый для получения электроэнергии. Одноконтурная ПГУ с ГТУ, имеющей начальную температуру примерно 1000 °С, может иметь абсолютный КПД около 42 %, что составит 63 % от теоретического КПД ПГУ. Коэффициент полезного действия трехконтурной ПГУ с промежуточным перегревом пара, в которой температура газов перед газовой турбиной находится на уровне 1450 °С, уже сегодня достигает 60 %, что составляет 82 % от теоретически возможного уровня. Нет сомнений в том, что КПД можно увеличить еще больше.

2. Парогазовая установка — самый экологически чистый двигатель. В первую очередь это объясняется высоким КПД — ведь вся та теплота, содержащаяся в топливе, которую не удалось преобразовать в электроэнергию, выбрасывается в окружающую среду и происходит ее тепловое загрязнение. Поэтому уменьшение тепловых выбросов от ПГУ по сравнению с паросиловой будет ровно в той степени, на сколько меньше расход топлива на производство электроэнергии.

3. Парогазовая установка — очень маневренный двигатель, с которым в маневренности может сравниться только автономная ГТУ.

4. При одинаковой мощности паросиловой и парогазовой ТЭС потребление охлаждающей воды ПГУ примерно втрое меньше.

5. ПГУ имеет умеренную стоимость установленной единицы мощности, что связано с меньшим объемом строительной части, с отсутствием сложного энергетического котла, дорогой дымовой трубы, системы регенеративного подогрева питательной воды, использованием более простых паровой турбины и системы технического водоснабжения.

6. ПГУ имеют существенно меньший строительный цикл. ПГУ, особенно одновальные, можно вводить поэтапно. Это упрощает проблему инвестиций.

Парогазовые установки практически не имеют недостатков, скорее следует говорить об определенных ограничениях и требованиях к оборудованию и топливу. Установки, о которых идет речь, требуют использования природного газа. Для России, где доля используемого для энергетики относительно недорого газа превышает 60 % и половина его используется по экологическим соображениям на ТЭЦ, имеются все возможности для сооружения ПГУ.

Все это говорит о том, что строительство ПГУ является преобладающей тенден­цией в современной теплоэнергетике.

КПД ПГУ утилизационного типа:

ηПГУ = ηГТУ + (1- ηГТУ)*ηКУ*ηПТУ

ПТУ — паротурбинная установка

В общем случае КПД ПГУ:

Здесь — Qгту количество теплоты, подведенной к рабочему телу ГТУ;

Qпсу — количество теплоты, подведенной к паровой среде в котле.

1. Принципиальные тепловые схемы отпуска пара и тепла с ТЭЦ. Коэффициент теплофикации α ТЭЦ. Способы покрытия пиковой тепловой нагрузки на ТЭЦ,

ТЭЦ (теплоэлектроцентрали) — предназначены для централизованного снабжения потребителей теплом и электроэнергией. Их отличие от КЭС в том, что они используют тепло отработавшего в турбинах пара для нужд производства, отопления, вентиляции и горячего водоснабжения. Из-за такого совмещения выработки электроэнергии и тепла достигается значительная экономия топлива в сравнении с раздельным энергоснабжением (выработкой электроэнергии на КЭС и тепловой энергии на местных котельных). Благодаря такому способу комбинированного производства, на ТЭЦ достигается достаточно высокий КПД, доходящий до 70%. Поэтому ТЭЦ получили широкое распространение в районах и городах с высоким потреблением тепла. Максимальная мощность ТЭЦ меньше, чем КЭС.

ТЭЦ привязаны к потребителям, т.к. радиус передачи теплоты (пара, горячей воды) составляет приблизительно 15 км. Загородные ТЭЦ передают горячую воду при более высокой начальной температуре на расстояние до 30 км. Пар для производственных нужд давлением 0.8-1.6 МПа может быть передан на расстояние не более 2-3 км. При средней плотности тепловой нагрузки мощность ТЭЦ обычно не превышает 300-500 МВт. Только в крупных городах, таких как Москва или Санкт-Петербург с большой плотностью тепловой нагрузки имеет смысл строить станции мощностью до 1000-1500 МВт.

Мощность ТЭЦ и тип турбогенератора выбирают в соответствии с потребностями в тепле и параметрами пара, используемого в производственных процессах и для отопления. Наибольшее применение получили турбины с одним и двумя регулируемыми отборами пара и конденсаторами (см. рис). Регулируемые отборы позволяют регулировать выработку тепла и электроэнергии.

Режим ТЭЦ — суточный и сезонный — определяется в основном потреблением тепла. Станция работает наиболее экономично, если ее электрическая мощность соответствует отпуску тепла. При этом в конденсаторы поступает минимальное количество пара. Зимой, когда спрос на тепло максимален, при расчетной температуре воздуха в часы работы промпредприятий нагрузка генераторов ТЭЦ близка к номинальной. В периоды, когда потребление тепла мало, например летом, а также зимой при температуре воздуха выше расчетной и в ночные часы электрическая мощность ТЭЦ, соответствующая потреблению тепла, уменьшается. Если энергосистема нуждается в электрической мощности, ТЭЦ должна перейти в смешанный режим, при котором увеличивается поступление пара в части низкого давления турбин и в конденсаторы. Экономичность электростанции при этом снижается.

Максимальная выработка электроэнергии теплофикационными станциями «на тепловом потреблении» возможна только при совместной работе с мощными КЭС и ГЭС, принимающими на себя значительную часть нагрузки в часы снижения потребления тепла.

сравнительный анализ способов регулирования тепловой нагрузки.

Преимущество: стабильный гидравлический режим тепловых сетей.

■ низкая надежность источников пиковой тепловой мощности;

■ необходимость применения дорогостоящих методов обработки подпиточной воды теплосети при высоких температурах теплоносителя;

■ повышенный температурный график для компенсации отбора воды на ГВС и связанное с этим снижение выработки электроэнергии на тепловом потреблении;

■ большое транспортное запаздывание (тепловая инерционность) регулирования тепловой нагрузки системы теплоснабжения;

■ высокая интенсивность коррозии трубопроводов из-за работы системы теплоснабжения большую часть отопительного периода с температурами теплоносителя 60-85 ОС;

■ колебания температуры внутреннего воздуха, обусловленные влиянием нагрузки ГВС на работу систем отопления и различным соотношением нагрузок ГВС и отопления у абонентов;

■ снижение качества теплоснабжения при регулировании температуры теплоносителя по средней за несколько часов температуре наружного воздуха, что приводит к колебаниям температуры внутреннего воздуха;

■ при переменной температуре сетевой воды существенно осложняется эксплуатация компенсаторов.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Страница 38 из 75

ПАРОГАЗОВЫЕ УСТАНОВКИ ЭЛЕКТРОСТАНЦИЙ
8.1. Понятие о парогазовых энергетических технологиях и устройство простейшей ПГУ

Парогазовыми называются энергетические установки, в которых теплота уходящих газов ГТУ прямо или косвенно используется для выработки электроэнергии в паротурбинном цикле.

На рис. 8.1 показана принципиальная схема простейшей парогазовой установки так называемого утилизационного типа. Уходящие газы ГТУ поступают в котел-утилизатор — теплообменник противоточного типа, в котором за счет тепла горячих газов генерируется пар высоких параметров, направляемый в паровую турбину.

Котел-утилизатор представляет собой шахту прямоугольного сечения, в которой размещены поверхности нагрева, образованные сребренными трубами, внутрь которых подается рабочее тело паротурбинной установки (вода или пар). В простейшем случае поверхности нагрева котла-утилизатора состоят из трех элементов: экономайзера3. испарителя 2 и пароперегревателя 1. Центральным элементом является испаритель. состоящий из барабана4 (длинного цилиндра, заполняемого наполовину водой), нескольких опускных труб 7 и достаточно плотно установленных вертикальных труб собственно испарителя 8. Испаритель работает на принципе естественной конвекции. Испарительные трубы находятся в зоне более высоких температур, чем опускные. Поэтому в них вода нагревается, частично испаряется и поэтому становится легче и поднимается вверх в барабан. Освобождающееся место заполняется более холодной водой по опускным трубам из барабана. Насыщенный пар собирается в верхней части барабана и направляется в трубы пароперегревателя1. Расход пара из барабана 4 компенсируется подводом воды из экономайзера 3. При этом поступающая вода, прежде чем испариться полностью, многократно пройдет через испарительные трубы. Поэтому описанный котел-утилизатор называется котлом с естественной циркуляцией .

В экономайзере происходит нагрев поступающей питательной воды практически до температуры кипения (на 10—20 °С меньше, чем температура насыщенного пара в барабане, полностью определяемая давлением в нем). Из барабана сухой насыщенный пар поступает в пароперегреватель, где перегревается сверх температуры насыщения. Температура получаемого перегретого пара t0 всегда, конечно, меньше, чем температура газов q Г. поступающих из газовой турбины (обычно на 25—30 °С).

Под схемой котла-утилизатора на рис. 8.1 показано изменение температур газов и рабочего тела при их движении навстречу друг другу. Температура газов плавно уменьшается от значения q Г на входе до значения q ух температуры уходящих газов. Движущаяся навстречу питательная вода повышает в экономайзере свою температуру до температуры кипения (точка а ). С этой температурой (на грани кипения) вода поступает в испаритель. В нем происходит испарение воды. При этом ее температура не изменяется (процесс ab ). В точке b рабочее тело находится в виде су­хого насыщенного пара. Далее в пароперегревателе происходит его перегрев до значения t0 .

Образующийся на выходе из пароперегревателя пар направляется в паровую турбину, где, расширяясь, совершает работу. Из турбины отработанный пар поступает в конденсатор, конденсируется и с помощью питательного насоса 6. повышающего давление питательной воды, направляется снова в котел-утилизатор.

Таким образом, принципиальное отличие паросиловой установки (ПСУ) ПГУ от обычной ПСУ ТЭС состоит только в том, что топливо в котле-утилизаторе не сжигается, а необходимая для работы ПСУ ПГУ теплота берется от уходящих газов ГТУ. Однако сразу же необходимо отметить ряд важных технических отличий ПСУ ПГУ от ПСУ ТЭС.

1. Температура уходящих газов ГТУ q Г практически однозначно определяется температурой газов перед газовой турбиной [см. соотношение (7.2)] и совершенством системы охлаждения газовой турбины. В большинстве современных ГТУ, как видно из табл. 7.2. температура уходящих газов составляет 530—580 °С (хотя имеются отдельные ГТУ с температурой вплоть до 640 °С). По условиям надежности работы трубной системы экономайзера при работе на природном газе температура питательной воды tп.в на входе в котел-утилизатор не должна быть меньше 60 °С. Температура газов q ух. покидающих котел-утилизатор, всегда выше, чем температура tп.в. Реально она находится на уровне q ух » 100 °С и, следовательно, КПД котла-утилизатора составит

где для оценки принято, что температура газов на входе в котел-утилизатор равна 555 °С, а температура наружного воздуха 15 °С. При работе на газе обычный энергетический котел ТЭС (см. лекцию 2 ) имеет КПД на уровне 94 %. Таким образом, котел-утилизатор в ПГУ имеет КПД существенно более низкий, чем КПД котла ТЭС.

2. Далее, КПД паротурбинной установки рассмотренной ПГУ существенно ниже, чем КПД ПТУ обычной ТЭС. Это связано не только с тем, что параметры пара, генерируемого котлом-утилизатором, ниже, но и с тем, что ПТУ ПГУ не имеет системы регенерации. А иметь ее она в принципе не может, так как повышение температуры tп.в приведет к еще большему снижению КПД котла-утилизатора.

Тем не менее, при всем этом КПД ПГУ оказывается весьма высоким. Для того чтобы убедиться в этом, рассмотрим ПГУ простой схемы (рис. 8.2), причем при рассмотрении будем принимать далеко не самые лучшие экономические показатели отдельных элементов оборудования.

Пусть в камере сгорания ГТУ сожжено некоторое количество газа, из которого получено Qкс = 100 МВт·ч теплоты. Допустим, что КПД ГТУ составляет 34 %. Это означает, что в ГТУ будет получено ЭГТУ = 34 МВт·ч электроэнергии. Количество теплоты

поступает в котел-утилизатор. Пусть его КПД равен h ку = 75 %. Тогда в дымовую трубу из котла уйдет

а количество тепла QПТУ = QкуQух = 49,5 МВт·ч поступает в паротурбинную установку для преобразования в электроэнергию. Пусть ее КПД всего лишь h ПТУ = 0,3; тогда электрогенератор паровой турбины выработает

электроэнергии. Всего ПГУ выработает

электроэнергии и, следовательно, КПД ПГУ hПТУ = Э/Qкс = 0,4885, т.е. около 49 %.
Приведенные рассуждения позволяют получить простую формулу для определения КПД ПГУ утилизационного типа:

Эта формула сразу же объясняет, почему ПГУ стали строиться лишь в последние 20 лет. Действительно, если к примеру взять ГТУ типа ГТ-100-ЗМ, то ее КПД h гту = 28,5 %, а температура за ГТУ q Г = 398 °С. При такой температуре газов в котле-утилизаторе можно сгенерировать пар с температурой около 370 °С, и КПД паротурбинной установки будет составлять примерно 14 %. Тогда при h ку = 0,75 КПД ПГУ составит

и целесообразнее построить обычный паротурбинный энергоблок СКД с большей экономичностью. С троительство ПГУ стало экономически оправданным лишь после создания высокотемпературных ГТУ, которые не только обеспечили ее высокий КПД, но и создали условия для реализации паротурбинного цикла высокой экономичности. Из соотношения (8.1) можно получить практически универсальное соотношение между мощностями газотурбинной и паротурбинной частью ПГУ:

т.е. это отношение определяется только КПД элементов ПГУ. Для рассмотренного выше примера

т.е. мощность ГТУ примерно вдвое выше, чем мощность паровой турбины. Именно это соотношение объясняет, почему ПГУ-450Т Северо-Западной ТЭЦ Санкт-Петербурга состоит из двух ГТУ и одной паровой турбины мощностью примерно по 150 МВт.
Представление об устройстве электростанции с ПГУ дает рис. 8.3, на котором изображена ТЭС с тремя энергоблоками. Каждый энергоблок состоит из двух рядом стоящих ГТУ 4 типа V94.2 фирмы Siemens, каждая из которых свои уходящие газы высокой температуры направляет в свой котел-утилизатор 8. Пар, генерируемый этими котлами, направляется в одну паровую турбину 10 с электрогенератором 9 и конденсатором, расположенным в конденсационном помещении под турбиной. Каждый такой энергоблок имеет суммарную мощность 450 МВт (каждая ГТУ и паровая турбина имеют мощность примерно 150 МВт). Между выходным диффузором 5 и котлом-утилизатором 8 устанавливают байпасную (обводную) дымовую трубу 12 и газоплотный шибер 6. Шибер позволяет отсечь котел-утилизатор 8 от газов ГТУ и направить их через байпасную трубу в атмосферу. Такая необходимость может возникнуть при неполадках в паротурбинной части энергоблока (в турбине, котле-утилизаторе, генераторе и т.д.), когда ее требуется отключить. В этом случае мощность энергоблока будет обеспечиваться только ГТУ, т.е. энергоблок может нести нагрузку в 300 МВт (хотя и со сниженной экономичностью). Байпасная труба весьма помогает и при пусках энергоблока: с помощью шибера котел-утилизатор отсекается от газов ГТУ, и последние выводятся на полную мощность в считанные минуты. Затем можно медленно, в соответствии с инструкцией, ввести в работу котел-утилизатор и паровую турбину.

При нормальной работе шибер, наоборот, не пропускает горячие газы ГТУ в байпасную трубу, а направляет их в котел-утилизатор.
Газоплотный шибер имеет большую площадь, представляет собой сложное техническое устройство, главным требованием к которому является высокая плотность, поскольку каждый 1 % потерянного тепла через неплотности означает снижение экономичности энергоблока примерно на 0,3 %. Поэтому иногда отказываются от установки байпасной трубы, хотя это существенно усложняет эксплуатацию.
Между котлами-утилизаторами энергоблока устанавливают один деаэратор, который принимает конденсат для деаэрации из конденсатора паровой турбины и раздает его на два котла-утилизатора.

Оценка технико-экономической эффективности модернизации ГТУ-ТЭС с использованием парогазовой технологии

Экономическая целесообразность форсированного внедрения ПТУ и ГТУ при обновлении тепловых электростанций

Комплексный подход к строительству и реконструкции электростанций с применением ПУ и ПГУ

Отработка технических решений на собственных электростанциях – залог надежной работы оборудования у заказчика

Конденсационная парогазовая электростанция для надежного энергоснабжения промышленных потребителей

Реконструкция паротурбинных электростанций — эффективный путь перевооружения энергетики

Опыт эксплуатации газопаротурбинной установки ГПУ-16К с впрыском пара Теплофикационные парогазовые установки для замены устаревшего оборудования ТЭЦ ОАО «Ленэнерго»

Повышение эксплуатационных характеристик энергетических установок

Сравнение паросилового блока с Т-265 и энергоблока с двумя ПГУ-170Т

Масштабы внедрения ПГУ и ГТУ в среднесрочной перспективе

В любой стране энергетика является базовой отраслью экономики, стратегически важной для государства. От её состояния и развития зависят соответствующие темпы роста других отраслей хозяйства, стабильность их работы и энерговооруженность. Энергетика создает предпосылки для применения новых технологий, обеспечивает наряду с другими факторами современный уровень жизни населения. На независимости страны от внешних, импортируемых энергоресурсов, также как и на развитом оборонном вооруженном комплексе основывается высокая позиция государства на международной политической арене.

В промышленности электрическая энергия из тепловой получается путем промежуточного преобразования её в механическую работу. Превращение тепла в электричество с достаточно высоким кпд без промежуточного преобразования его в механическую работу было бы крупным шагом вперёд. Тогда отпала бы надобность в тепловых электростанциях, использовании на них тепловых двигателей, которые имеют относительно низкий кпд, весьма сложны и требуют довольно квалифицированного ухода при эксплуатации. Современная техника пока не позволяет создать более или менее мощные установки для получения электричества непосредственно из тепла. Все установки такого типа пока могут работать или только кратковременно, или при крайне малых мощностях, или при низких кпд, или зависят от временных факторов, таких как погодные условия, время суток, и т.п. В любом случае они не могут гарантировать достаточную стабильность в энергоснабжении страны.

Поэтому на тепловых электростанциях нельзя обойтись без тепловых двигателей. Перспективное направлении развития энергетики связано с газотурбинными (ГТУ) и парогазовыми (ПГУ) энергетическими установками тепловых электростанций. Эти установки имеют особые конструкции основного и вспомогательного оборудования, режимы работы и управление. ПГУ на природном газе – единственные энергетические установки, которые в конденсационном режиме работы отпускают электроэнергию с электрическим кпд более 58% .

В энергетике реализован ряд тепловых схем ПГУ, имеющих свои особенности и различия в технологическом процессе. Происходит постоянная оптимизация как самих схем, так и улучшение технических характеристик её узлов и элементов. Основными показателями, характеризующими качество работы энергетической установки, являются её производительность (или кпд) и надёжность.

В этой работе особое внимание уделяется практической стороне вопроса, т.е. на сколько выгодно с экономической и экологической точки зрения использование ПГУ в энергетике.

Парогазовые установки ( ГОСТ 27240-87)

Парогазовые установки (в англоязычном мире используется название combined-cycle power plant) — сравнительно новый тип генерирующих станций, работающих на газе или на жидком топливе. Принцип работы самой экономичной и распространенной классической схемы таков. Устройство состоит из двух блоков: газотурбинной (ГТУ) и паросиловой (ПС) установок. В ГТУ вращение вала турбины обеспечивается образовавшимися в результате сжигания природного газа, мазута или солярки продуктами горения — газами. Образовавшиеся в камере сгорания газотурбинной установки продукты горения вращают ротор турбины, а та, в свою очередь, крутит вал первого генератора.

В первом, газотурбинном, цикле КПД редко превышает 38%. Отработавшие в ГТУ, но все еще сохраняющие высокую температуру продукты горения поступают в так называемый котел-утилизатор. Там они нагревают пар до температуры и давления (500 градусов по Цельсию и 80 атмосфер), достаточных для работы паровой турбины, к которой подсоединен еще один генератор. Во втором, паросиловом, цикле используется еще около 20% энергии сгоревшего топлива. В сумме КПД всей установки оказывается около 58%. Существуют и некоторые другие типы комбинированных ПГУ, но погоды в современной энергетике они не делают. Как правило, такие системы используются генерирующими компаниями в случае, когда необходимо максимизировать производство электрической энергии. Когенерация в этом случае играет подчиненную роль и обеспечивается за счет отвода части тепла из паровой турбины. Паровые энергоблоки хорошо освоены. Они надежны и долговечны. Их единичная мощность достигает 800-1200 МВт, а коэффициент полезного действия (КПД), представляющий собой отношение произведенной электроэнергии к теплотворности использованного топлива, составляет до 40-41%, а на наиболее совершенных электростанциях за рубежом — 45-48%. Также уже длительное время в энергетике используются газотурбинные установки (ГТУ). Это двигатель совершенно иного типа. В ГТУ атмосферный воздух сжимается до 15-20 атмосфер, в нем топливо сжигается с образованием высокотемпературных (1200-1500 °С) продуктов сгорания, которые расширяются в турбине до атмосферного давления. Вследствие более высокой температуры турбина развивает примерно вдвое большую мощность, чем необходимо для вращения компрессора. Избыток ее используется для привода электрического генератора. За рубежом эксплуатируются ГТУ единичной мощностью 260-280 МВт с КПД 36-38%. Температура отработавших в них газов составляет 550-620 °С. Вследствие принципиальной простоты цикла и схемы стоимость газотурбинных установок существенно ниже, чем паровых. Они занимают меньше места, не нуждаются в охлаждении водой, быстро запускаются и изменяют режимы работы. ГТУ легче обслуживать и полностью автоматизировать.

Так как рабочей средой газовых турбин являются продукты сгорания, сохранять работоспособность деталей, которые омываются ими, можно, только используя чистые виды топлива: природный газ или жидкие дистилляты

ГТУ быстро развиваются, с повышением параметров, единичной мощности и КПД. За рубежом они освоены и эксплуатируются с такими же показателями надежности, как и паровые энергоблоки.

Разумеется, тепло отработавших в ГТУ газов может быть использовано. Проще всего это сделать путем подогрева воды для отопления или выработки технологического пара. Количество произведенного тепла оказывается несколько больше, чем количество электроэнергии, а общий коэффициент использования тепла топлива может достигать 85-90%.

Есть и другая, еще более привлекательная, возможность заставить это тепло работать. Из термодинамики известно, что КПД наиболее совершенного цикла теплового двигателя (его придумал Карно почти 200 лет назад) пропорционально отношению температур подвода и отвода тепла. В ГТУ подвод тепла происходит в процессе сгорания. Температура образующихся продуктов, которые являются рабочей средой турбин, не ограничивается стенкой (как в котле), через которую необходимо передавать тепло, и может быть существенно выше. Освоено охлаждение омываемых горячими газами деталей, позволяющее поддерживать их температуры на допустимом уровне.

В паровых энергоустановках температура перегретого пара не может превышать допустимую для металла труб котельных пароперегревателей и таких неохлаждаемых узлов, как паропроводы, коллекторы, арматура, — она составляет сейчас 540-565 °С, а в самых современных установках — 600-620 °С. Зато отвод тепла в конденсаторах паровых турбин осуществляется циркуляционной водой при температурах, близких к температуре окружающей среды.

Указанные особенности позволяют существенно повысить КПД производства электроэнергии путем объединения в одной парогазовой установке (ПГУ) высокотемпературного подвода (в ГТУ) и низкотемпературного отвода тепла (в конденсаторе паровой турбины). Для этого отработавшие в турбине газы подаются в котел-утилизатор, где генерируется и перегревается пар, поступающий затем в паровую турбину. Вращаемый ею электрический генератор при неизменном расходе топлива в камере сгорания ГТУ увеличивает выработку электроэнергии в 1,5 раза. В итоге КПД лучших современных ПГУ составляет 55-58%. Такие ПГУ называют бинарными потому, что в них осуществляется двойной термодинамический цикл: пар в котле-утилизаторе и работа паровой турбины производятся за счет тепла, подведенного в камере сгорания ГТУ и уже отработавшего в верхнем газотурбинном цикле.

С учетом всех достоинств ПГУ наиболее важной задачей для отечественной энергетики является перевод многочисленных паровых электростанций, работающих в основном на природном газе, в парогазовые.

Привлекательными особенностями таких ПГУ, помимо высоких КПД, являются умеренная удельная стоимость (в 1,5-2 раза ниже, чем у паровых энергоблоков близкой мощности), возможность сооружения за короткое (два года) время, вдвое меньшая потребность в охлаждающей воде, хорошая маневренность.

С учетом всех достоинств ПГУ наиболее важной задачей для отечественной энергетики является перевод многочисленных паровых электростанций, работающих в основном на природном газе, в парогазовые. При техническом перевооружении электростанций возможны два варианта создания бинарных ПГУ.

Во-первых, строительство на площадке нового главного корпуса с оптимальными ПГУ единичной мощностью 350-1000 МВт с КПД 55-60%. Действующие энергоблоки в этом случае после окончания сроков службы выводятся в резерв или списываются. Сооружение оптимально спроектированных бинарных ПГУ в новом главном корпусе требует больших капитальных затрат, но такая электростанция обладает максимальной экономичностью. При этом увеличение единичной мощности ГТУ и ПГУ заметно уменьшает удельную площадь и стоимость главного корпуса. Во-вторых, размещение ГТУ и котлов-утилизаторов в существующих или новых главных корпусах и использование в создаваемых с ними ПГУ части имеющегося паротурбинного и электрического оборудования. Анализ мероприятий, целью которых является продление работоспособности энергоблоков на значительное время (например, на 20-30 лет или 100-150 тыс. ч), свидетельствует о принципиальной возможности применения в таких парогазовых установках:

 электрического генератора и практически всего электрооборудования;

 цилиндра низкого давления (ЦНД), а с заменой или восстановлением части деталей — и других цилиндров паровой турбины;

 конденсатора (полностью или частично);

 насосов и трубопроводов циркуляционной системы;

 паропроводов и арматуры.

Конкретные проработки показывают, что наилучшие результаты получаются при использовании двух ГТУ мощностью 110 МВт на одну турбину К-150 (165) или К-200: КПД электростанции при этом увеличится с 36-38% до

С турбинами К-300 при использовании трех ГТУ по 160-180 МВт или двух ГТУ по 260-270 МВт могут быть созданы ПГУ мощностью около 800 МВт с КПД 50-55% в зависимости от совершенства принятых ГТУ. Приемлемые по прочности и экономичности режимы работы ЦВД и ЦСД обеспечиваются путем соответствующего выбора расходов и параметров пара (см. ниже). Другим вариантом является выбор оптимальных расходов и параметров пара и переделка под них проточной части ЦВД и ЦСД. Особенностью газовых турбин является существенное изменение параметров и показателей в зависимости от температуры наружного воздуха: при ее снижении мощности ГТУ и ПГУ возрастают на 10-15%. Для ПГУ общей мощностью 800 МВт с тремя ГТУ целесообразно использовать ячейки двух соседних энергоблоков К-300. В этом случае одна паровая турбина сохраняется, а другая демонтируется. Электрический генератор, главный трансформатор и ячейка распределительного устройства демонтированного блока могут послужить для одной из ГТУ. Разумеется, в таком случае демонтируются регенеративные подогреватели НД и ВД обоих энергоблоков. Мощность ТЭС после замены паровых энергоблоков парогазовыми возрастает в 1,35 раза. ВТИ давно пропагандирует проведение подобных реконструкций, но в России такие планы пока не реализуются из-за низкой стоимости природного газа и отсутствия инвестиций. В последние годы реконструкцию паровых электростанций начали осуществлять за рубежом, в частности на больших — до 650 МВт — газомазутных энергоблоках. Не менее важно превращение паровых газомазутных ТЭЦ в парогазовые. Комбинированное производство электроэнергии и тепла является энергоресурсосберегающей технологией. Оно позволяет использовать 85-90% тепла топлива, превращая значительную его часть в электричество, принципиально более ценное, чем тепло. По сравнению с лучшими схемами раздельного производства общий расход топлива в данном случае оказывается на 20-25% меньше. Соответственно уменьшаются выбросы в окружающую среду. В настоящее время, однако, теплофикация в России переживает серьезный кризис. Стоимость электроэнергии и тепла на многих ТЭЦ, особенно оснащенных устаревшим оборудованием, достаточно высока, а их реализация по неразумно установленным тарифам затруднена. Положение усугубляется недостаточной надежностью теплосетей и значительными потерями тепла при передаче по ним. Многие потребители предпочитают строить собственные котельные и покупать электроэнергию других поставщиков. Причин такого положения две — технологическая и институциональная (ценообразование, тарифы, налоги и т. д.). Предметом статьи является только один из технологических аспектов проблемы: возможности повышения эффективности ТЭЦ с комбинированной выработкой электроэнергии и тепла. Номинальные показатели наиболее экономичных и широко распространенных паротурбинных установок ТЭЦ представлены в табл. 1.

Тип ТЭЦ и режим работы

Концепция современных теплофикационных турбин возникла в период, когда при имевшемся дефиците электроэнергии требовалось независимо регулировать работу по тепловому и электрическому графикам нагрузок. Отопительные ТЭЦ функционируют с сильно меняющимися в течение года тепловыми нагрузками. Электроэнергия, вырабатываемая летом менее экономичными турбинами ТЭЦ в условиях вакуума в конденсаторе, не может конкурировать с энергией крупных конденсационных электростанций. Зимой развитые выхлопные части турбин потребляют энергию для преодоления трения, а также для вентиляции и охлаждения последних ступеней. Работа с тепловой нагрузкой приводит к снижению удельной электрической мощности паровых ТЭЦ, для которых вообще характерно умеренное производство электроэнергии на тепловом потреблении. Наконец, удельная стоимость паровых ТЭЦ существенно выше, чем конденсационных электростанций.

Значительно повысить эффективность ТЭЦ, работающих на природном газе, можно путем использования на них газотурбинных и парогазовых установок. Целесообразны следующие направления их применения:

1. Газотурбинные ТЭЦ, в которых газы после ГТУ сбрасываются в водогрейный или паровой котел-утилизатор, где используются для выработки тепла (подогрева воды или генерирования пара) для внешних потребителей. Схемы ГТУ-ТЭЦ наиболее просты. КПД современных ГТУ без выработки тепла близок или даже выше КПД паротурбинных ТЭЦ докритического давления на конденсационном режиме. Выработка тепла не снижает этого КПД — в отличие от паротурбинных установок, где электрическая мощность и КПД вследствие производственных (особенно при высоком давлении) и теплофикационных отборов пара значительно уменьшаются. Характерные соотношения при расчетных (номинальных) условиях приведены в табл. 1.

Тип ТЭЦ и режим работы

Доля тепла топлива, преобразованная в: электроэнергию, % тепло, %

Коэффициент использования тепла топлива, %

Отношение электрической и тепловой мощности

Для увеличения выработки тепла в периоды максимальных нагрузок применяются котлы-утилизаторы ГТУ, оснащенные горелками для сжигания дополнительного топлива. Однако сжигание топлива перед котлами-утилизаторами, как и снижение тепловой нагрузки (недоиспользование тепла отработавших в ГТУ газов), уменьшает эффективность ГТУ-ТЭЦ, которые наиболее привлекательны для промышленных ТЭЦ со значительной долей стабильной паровой нагрузки. Экономически они выгодны и при резко переменном графике тепловой и электрической нагрузки: в качестве примера можно назвать Якутскую ГРЭС (в сущности ТЭЦ) с восьмью ГТУ общей мощностью около 250 МВт, которая успешно эксплуатируется с 1971 г.

2. ПГУ-ТЭЦ бинарного цикла. Каждая ГТУ работает на свой котел-утилизатор, в котором генерируется и перегревается пар, поступающий, например, в общий коллектор, а из него — в имеющиеся паровые турбины. Первой теплофикационной ПГУ бинарного типа в России является ПГУ-450 на Северо-Западной ТЭЦ в Санкт-Петербурге, эксплуатирующаяся сейчас без тепловой нагрузки. Ее схема позволяет в широких пределах изменять соотношение между электрической и тепловой нагрузкой, сохраняя общий высокий коэффициент использования тепла топлива. Отработанный на Северо-Западной ТЭЦ модуль ГТУ — котел-утилизатор, генерирующий 240 т/ч пара высокого давления при электрической мощности 150 МВт, может прямо использоваться для питания турбин ПТ-60, ПТ-80 и Т-100 на действующих ТЭЦ. При полной загрузке их выхлопов расход пара через первые ступени этих турбин будет значительно ниже номинального. Его можно будет пропустить при характерных для ПГУ-450 пониженных давлениях пара. Это и одновременное уменьшение температуры свежего пара до 500-510 °С летом и даже несколько более низких значений зимой снимет вопрос об исчерпании ресурса таких турбин. Конечно, мощность паровых турбин в составе ПГУ будет, как показано в табл. 2, ниже номинальной, но общая мощность блока при этом возрастет более чем вдвое, а его экономичность по выработке электроэнергии не будет зависеть от режима и станет существенно более высокой, чем у лучших конденсационных энергоблоков.

Такое изменение показателей радикально влияет на экономичность ТЭЦ. Суммарные издержки на выработку электроэнергии и тепла в них снизятся, а конкурентоспособность на рынках электроэнергии и тепла возрастет. ГТУ с котлами-утилизаторами лучше всего располагать в новом главном корпусе на площадке действующей ТЭЦ. Старые котлы могут сохраняться в резерве для покрытия пиковых нагрузок или на случай перерывов в газоснабжении. Газотурбинные установки мощностью 15-30 МВт и ниже целесообразно применять для децентрализованных источников электроэнергии и тепла, реконструкции отопительных и производственных котельных с превращением их в небольшие ГТУ-ТЭЦ, а иногда и создания ПГУ-ТЭЦ (например, на базе промышленных ТЭЦ с паровыми турбинами мощностью 6-12 МВт). ГТУ такого класса мощности удобны для сохранения выработки электроэнергии на старых ТЭЦ с низкими (3-9 МПа) давлениями пара. На них целесообразна установка четырех-шести ГТУ мощностью 15-30 МВт с котлами-утилизаторами и использованием выработанного в них пара в имеющихся турбинах (если они работоспособны) или в новой паровой турбине. Невысокие параметры пара не являются в этом случае большим недостатком. Таким образом, создается экономичная современная ТЭЦ с электрической мощностью 80-200 МВт и тепловой мощностью 100-200 Гкал/ч. Остальная часть тепловой нагрузки покрывается в режиме котельной. Существует множество различных сочетаний газотурбинных и паровых циклов. Некоторые из них время от времени реализуются. Например, на электростанциях со значительным остаточным ресурсом энергоблоков, в топливном балансе которых велика доля мазута или угля, но имеется и природный газ в количестве, достаточном для питания ГТУ, возможны газотурбинные надстройки с использованием тепла отработавших в ГТУ газов в основном паровом цикле. При надстройке энергоблоков мощностью 300 МВт установкой ГТЭ-110 по схеме со сбросом отработавших газов в топку котла мощность станции может быть увеличена в

1,5 раза, а КПД повышен до 44-46%. Газотурбинные надстройки блоков мощностью 800 МВт в зависимости от схемы и показателей применяемых ГТУ (две ГТЭ-160 или ГТЭ-180) позволяют повысить мощность на 30-35% и снизить удельный расход тепла на 8-14%. Подобные надстройки целесообразны для новых газовых ТЭС (Печорской, Псковской) или газо-угольных (если они появятся) с энергоблоками мощностью 200 МВт. Для них оптимальны ГТУ с расходом газа 200-250 кг/с и мощностью 60-75 МВт. КПД надстроенного блока при работе на природном газе составит 40-44%. Для того чтобы газотурбинные и парогазовые установки смогли сыграть важную роль в повышении эффективности электроэнергетики и тем самым способствовали развитию национальной экономики России, нужна согласованная программа действий, реализация которой будет опираться на федеральные и местные ресурсы, ресурсы банков и энергокомпаний (РАО. Газпром), потребляющие отрасли промышленности, энерго- и авиа- машиностроение.

Масштабы применения ГТУ разных типоразмеров в ГТУ-ТЭЦ, газотурбинных надстройках и в составе высокоэкономичных парогазовых установок при техническом перевооружении тепловых электростанций по оценкам проектных организаций РАО в 2002-2015 гг. могут составить: по газотурбинным установкам 20-30 МВт — 57 шт. 60-80 МВт — 147 шт. 110 МВт — 146 шт. 160-180 МВт и более — 59 шт. Их общая мощность оценена в

40 млн кВт. Приведенные цифры следует рассматривать как минимальные, поскольку они определены в условиях отсутствия собственно ГТУ, а тем более положительного опыта их применения и реальных источников инвестиций.

Только на ТЭЦ мощностью более 200 МВт (эл.), в топливном балансе которых природный газ занимает 90% или более, эксплуатируется около 300 паровых турбин мощностью 60-110 МВт, которые целесообразно заменить газовыми. Наибольшую выгоду можно получить, если такая замена будет проведена с увеличением электрической мощности ТЭЦ (при постоянной тепловой нагрузке оптимальным будет увеличение мощности в 2-2,5 раза).

Если, например, на базе всех имеющихся на городских ТЭЦ Мосэнерго турбин ПТ-80 и Т-100 создать рассмотренные выше ПГУ, потребуется установить около 50 ГТУ общей мощностью 7,3 млн кВт. Электрическая мощность ТЭЦ увеличится на 5,7 млн кВт, а тепловая — всего на 720 Гкал/ч. Конечно, такое тотальное техперевооружение вряд ли возможно из-за трудностей, связанных с необходимостью вывода увеличенной мощности и обеспечения надежной круглогодичной подачи природного газа (или наличия резерва в виде дизельного топлива), а также с решением в проектах технических задач с минимальными капиталовложениями. Для удовлетворения потребностей отечественной электроэнергетики в ближайшие годы необходимо:

 освоить в производстве и эксплуатации экономичные энергетические газотурбинные установки мощностью до 35 МВт, 60-80 МВт, 110 и 180 МВт;

 спроектировать, соорудить и ввести в действие конденсационные и теплофикационные парогазвые установки мощностью 80-540 МВт, газотурбинные ТЭЦ и надстройки на действующих электростанциях;

 выполнить обосновывающие исследования и отработать конструкции критических узлов ГТУ для проектирования перспективного газотурбинного агрегата мощностью 250-300 МВт. Разработка и внедрение отечественных высокоэкономичных высокотемпературных газовых турбин мощностью 25-180 МВт и парогазовых установок мощностью 80-540 МВт, которые по своим техническим характеристикам будут на уровне зарубежных, создадут техническую и производственную базу для коренной структурной перестройки электроэнергетики России. Достижение успеха здесь возможно только при условии конверсии и использования богатого опыта и научно-технического потенциала авиационной промышленности. Разумеется, для обоснования разработок необходимы научные исследования. Чтобы осуществить серьезные проекты, потребуется объединение ресурсов поставщиков и потребителей, а также поддержка со стороны государства. Применение газотурбинных и парогазовых установок будет наиболее успешным при круглогодично устойчивом газоснабжении и подаче на электростанции газа полного (3-4 МПа) давления. Технически это вполне реально. Проектные проработки свидетельствуют о возможности привязки к существующей сети газопроводов действующих ТЭС мощностью 30-40 млн кВт ГТУ без сложных дополнительных работ по газоснабжению. Их внедрение позволит в 1,5-2 раза снизить издержки производства электроэнергии и тепла.

Оценка технико-экономической эффективности модернизации ГТУ-ТЭС с использованием парогазовой технологии

При выборе способа технического перевооружения ГТЭС необходим глубокий детальный анализ технических возможностей модернизируемого объекта — с учетом конкретных условий проведения работ, схемы финансирования и т.д. В статье представлены результаты исследования экономической эффективности технического перевооружения энергообъекта с использованием парогазовых технологий на примере реконструкции Ингушской ГТЭС.

A. Виноградов, А. Григорьев, В. Макаревич — ЗАО «МР-Энерго-Строй»

B. Буров, В. Торжков — Московский энергетический институт (ТУ)

Ингушская ГТЭС (проект ЦПЭ АО РОСЭП, генеральный подрядчик ЗАО «МР-Энерго»), изначально предназначенная для комплексной выработки электрической и тепловой энергии, состоит из четырех газотурбинных установок типа ГТГ-15 производства НПКГ «Зоря»-«Машпроект». Компоновка основного оборудования ГТЭС — размещение энергоустановок в двух модулях, в каждом по две ГТУ.

Выработка тепловой энергии на внешнее потребление в виде горячей воды должна была осуществляться за счет утилизации тепла выхлопных газов газотурбинных двигателей, для чего предусмотрены водогрейные котлы-утилизаторы (газовые подогреватели сетевой воды).

Вследствие резкого снижения потребности в тепловой энергии и низкой эффективности использования топлива при работе ГТУ по простому циклу (кпд по выработке электроэнергии брутто при стандартных условиях ISO составляет 31%), МР-Энерго-Строй и МЭИ провели исследования по повышению тепловой экономичности Ингушской ГТЭС. Одним из основных вариантов является создание на базе ГТЭС парогазовой электростанции.

На первом этапе техническое перевооружение предполагается провести на двух установленных газотурбинных агрегатах. Наиболее предпочтительно использование парогазовой установки с котлом-утилизатором одного давления (рис. 1).

Принципиальная тепловая схема ПГУ-КЭС с котлом-утилизатором одного давления:

2-котел-утилизатор (ПЕ, И, ЭК- соответственно пароперегреватель, испарительная система и экономайзерная поверхности нагрева КУ; ГПК- газовый подогреватель конденсата)

4-деаэратор питательной воды

Такие ПГУ характеризуются достаточно простой тепловой схемой, компактны, что особенно важно при реконструкции ГТУ малой и средней мощности.

Выбранный вариант тепловой схемы ИГУ предусматривает установку паровой турбины с конденсацией пара. Основным критерием при выборе параметров пара и мощности паровой турбины является располагаемый теплоперепад выхлопных газов ГТУ, а также характер его изменения в течение года в зависимости от температуры наружного воздуха.

Существуют два основных подхода к надстройке газотурбинного оборудования паросиловыми блоками: применение типового и использование вновь разрабатываемого паротурбинного оборудования с наиболее оптимальными для заданного типа ГТУ начальными параметрами пара. Рассмотрены следующие варианты:

1.Создание двух парогазовых энергоблоков на базе серийно выпускаемого оборудования. В качестве типовой была выбрана паротурбинная установка конденсационного типа К-6-1,6У производства Калужского турбинного завода. Номинальная электрическая мощность данного агрегата б МВт (начальные параметры пара 1,57 МПа/320°С, давление пара за турбиной — 9,8 кПа). Тепловая схема каждого из двух блоков представлена на рис. 1. Следует отметить, что в заводской комплектации в состав данной ПГУ включен подогреватель низкого давления (ПНД) для подогрева основного конденсата перед деаэратором атмосферного типа. В схеме ПГУ эту функцию выполняет газовый подогреватель конденсата.

2. Создание на базе двух ГТУ парогазового дубль-блока.

За счет утилизации части тепла уходящих газов в КУ генерируется перегретый пар. Он поступает в общий коллектор и далее в проточную часть паровой турбины для выработки электроэнергии. В остальном тепловая схема конденсационного парогазового дубль- блока аналогична представленной на рис. 1. Выбор такого варианта обусловлен, прежде всего, возможностью размещения основного оборудования ПГУ в рамках существующих компоновочных решений проекта Ингушской ГТЭС. При реализации данной схемы появляется возможность более компактного размещения паротурбинного оборудования во вновь сооружаемом машинном зале, сокращается количество вспомогательного оборудования и т.д.

Как показывают результаты ранее выполненных исследований, начальные параметры пара указанной типовой паротурбинной установки не являются оптимальными с точки зрения тепловой экономичности ПГУ на базе ГТУ типа ГТГ-15. В связи с этим для них были получены оптимальные начальные параметры пара, генерируемого в котле-утилизаторе (КУ). Температурный напор на входе в пароперегреватель КУ а также давление в конденсаторе паротурбинных установок приняты равными варианту с турбиной К-6-1,6У. Таким образом, для схемы дубль- блока параметры пара, генерируемого в КУ, составили: Рпе =0,9 МПа, tпе =325°C. Электрическая мощность такой паровой турбины при работе в составе дубль-блока ПГУ с учетом изменения характеристик выхлопных газов ГТУ (в зависимости от температуры наружного воздуха) составит около 10 МВт.

3. ПГУ-КЭС на базе установки К-6-1,6У с использованием дополнительного сжигания топлива перед КУ в среде выхлопных газов ГТУ.

Предварительный анализ характеристик турбины К-6-1,6У и теплового потенциала выхлопных газов агрегата ГТГ-15 показал неполную загрузку данной ПТУ паром. Величина загруженности при среднегодовой температуре наружного воздуха составляет около 72,5% от номинального расхода пара (при отрицательных tHB она может снижаться до 50% и ниже). Для увеличения и стабилизации расхода и параметров генерируемого в котле-утилизаторе пара возможно использование дожигания топлива.

Для каждого из рассмотренных способов перевооружения были проведены расчеты элементов схемы и установки в целом. Ввиду отсутствия серийных котлов-утилизаторов для генерации пара необходимых параметров, проведена серия предварительных расчетов для оценки поверхностей нагрева КУ и их компоновки. Расчеты проводились с использованием методик и программных средств, разработанных в НИЛ «ГТУ и ПГУ ТЭС» МЭИ на основе нормативных документов. Конструкторский расчет КУ проводился для характеристик ГТУ, соответствующих условиям среднегодовой температуры рассматриваемого региона tHB =10,4°C.

На основе результатов, полученных для среднемесячных температур, были определены суммарные годовые и среднегодовые показатели тепловой экономичности ПГУ-КЭС. При этом количество часов работы станции в году принято равным 8000 (табл. 1).

Годовые показатели работы вариантов ПГУ-КЭС на базе ГТУ типа ПТ-15 Таблица 1

Здесь также представлены показатели работы ГТУ по простому циклу (без утилизации тепла выхлопных газов). Вариантам 1 и 3 соответствуют показатели двух парогазовых моноблоков, варианту 2 — одного парогазового дубль- блока ГТЭС -двух газотурбинных установок ГТГ-15 простого цикла.

На основании анализа результатов расчета прирост кпд по производству электроэнергии нетто, в зависимости от варианта, составляет 7-8% (абс.) по сравнению с показателями работы ГТУ в простом цикле. Как видно из табл. 1. реализация технического перевооружения при оптимальных начальных параметрах пара (вариант 2) приводит к наибольшему приросту кпд. Дополнительное сжигание топлива перед КУ (вариант 3) для обеспечения ПТУ К-6-1,6У паром наряду с увеличением мощности установки приводит к снижению кпд производства электроэнергии, по сравнению с вариантом без дожигания (вариант 1).

Полученные показатели тепловой экономичности и суммарные годовые показатели являются исходной информацией для проведения исследований экономической эффективности проекта реконструкции ГТЭС. При этом основой методического подхода является сопоставление капитальных вложений в проведение реконструкции и прироста прибыли в результате ее проведения. При предлагаемых способах технического перевооружения повышается электрическая мощность, а также тепловая экономичность установки. В этом случае прирост прибыли в рамках одного года после создания на базе действующей ГТУ парогазовой установки можно выразить как (р./год):

— текущий тариф на электроэнергию (принят постоянным в рамках года, р./ МВт*ч);

— электрическая мощность на клеммах генератора паровой турбины (МВт);

— электроэнергия для обеспечения собственных нужд ПТУ;

— электрическая мощность газотурбинной установки при работе в простом цикле (МВт);

— продолжительность соответствующего i-го месяца (ч.);

— количество часов вывода электростанции из-под нагрузки (для планового ремонта и т.п.); i=1. 12;

— годовой расход натурального топлива в камеры дожигания КУ (кг/год);

— цена топлива, сжигаемого в камере дожигания КУ (принята постоянной в рамках года, р./кг);

— коэффициент снижения мощности ГТУ, учитывающий изменение мощности ГТУ из-за дополнительного аэродинамического сопротивления на выхлопе вследствие установки котла-утилизатора;

— издержки, связанные с эксплуатацией ПТУ (в том числе КУ) в составе ПГУ (р./год);

— изменение прочих издержек (р./год):

— прочие издержки, связанные с работой ПГУ;

— прочие издержки, связанные с работой ГТЭС до реконструкции (р./год).

Следует отметить, что в формуле (1) принято, что режим работы ГТУ в составе ПГУ остается неизменным, т.е. издержки, связанные с эксплуатацией газотурбинной установки в составе ПГУ, остаются неизменными по сравнению с исходным вариантом ГТЭС.

Оценка суммарных капиталовложений в реконструкцию Ингушской ГТЭС выполнена на основе данных, представленных производителями оборудования, экспертных оценок и проектов-аналогов. При этом принимались во внимание только затраты, связанные с вводом в действие нового оборудования. На рассматриваемой ГТЭС изначально предусматривалась утилизация уходящих газов ГТУ в газовых подогревателях сетевой воды. При размещении паровых котлов-утилизаторов возможно использование ряда ранее принятых строительных и технических решений. Капитальные вложения в осуществление технического перевооружения для рассматриваемых вариантов (с учетом НДС) представлены в табл. 2.

Оценка капитальных вложений для варианта с использованием вновь разрабатываемого паротурбинного оборудования для работы в составе дубль- энергоблока ПГУ (вариант 2) проводилась на базе данных о стоимости установки К-6-1,6У. При этом учитывалось, что цена проектных и конструкторских работ по созданию новой ПТУ составляет ориентировочно 10% от ее цены и распространяется только на первый экземпляр. Поэтому возможно некоторое увеличение удельных капитальных вложений по сравнению с вариантом 1. Однако в данном случае не учитывался эффект снижения стоимости вследствие укрупнения единичной мощности паротурбинного оборудования и уменьшения количества вспомогательных агрегатов, что в конечном итоге способствует сокращению удельных капитальных вложений для варианта 2. Увеличение стоимости реконструкции для варианта 3 объясняется дополнительными капитальными вложениями в блоки дожигающих устройств. Определение эффективности инвестиций в реконструкцию газотурбинной ТЭС проводилось в соответствии с «Методическими рекомендациями по оценке эффективности инвестиционных проектов» с учетом представленных выше особенностей. В качестве основных критериев приняты срок окупаемости (возврата капитала — РВ или DPB) и интегральные показатели:

■ индекс прибыльности (доходности) — PI;

■ внутренняя норма рентабельности (доходности) — IRR.

Анализ коммерческой эффективности реконструкции выполнен с использованием компьютерной программы «ProjectExpert 7.O3», разработанной компанией «Про-Инвест-ИТ».

Все виды интегральных результатов и затрат выражались и сопоставлялись в дисконтированной форме. Ставка дисконтирования принята равной 10%. Расчеты выполнены в ценах по состоянию на 1-й квартал 2001 г. с учетом платежей в бюджетные и внебюджетные фонды и с учетом НДС. Продолжительность реконструкции, включая проектирование и пусконаладочные работы, — 18 месяцев. Основные исходные данные, принятые при расчетах эффективности инвестиционного проекта, приведены в табл. 2. В расчетах были заданы переменные значения уровня инфляции с тенденцией снижения годовых темпов инфляции — после 2004 г. годовой уровень инфляции принят постоянным и равным 10%.

При расчете учитывались следующие издержки, связанные с эксплуатацией вновь устанавливаемого оборудования ПГУ-КЭС:

■ топливо на технологические цели (в камеры дожигания котлов-утилизаторов);

■ вода на технологические цели (подпитка контуров котлов-утилизаторов и контура оборотного водоснабжения);

■ заработная плата персонала (дополнительный штат, связанный с вводом нового оборудования);

■ расходы на содержание и эксплуатацию оборудования ;

■ ремонт основного оборудования.

Нормы амортизационных отчислений по всем активам (оборудование, здания и сооружения, другие активы) приняты в соответствии с «Классификацией основных средств, включаемых в амортизационные группы» от 1 января 2002 г.

Затраты на все виды ремонтных работ для паросилового оборудования приняты на базе проектов аналогов из расчета МВт»ч выработанной электроэнергии.

Основные интегральные показатели эффективности инвестиционного проекта, определенные без учета схемы финансирования, приведены в табл. 3.

Анализ полученных результатов указывает на экономическую эффективность проекта реконструкции для всех рассматриваемых вариантов. Показателем эффективности является тот факт, что срок окупаемости меньше принятого для расчета (15 лет) и внутренняя норма рентабельности превышает принятую ставку дисконтирования. Учитывая, что инвестирование в энергетику в современных условиях характеризуется достаточно продолжительными сроками окупаемости, полученные абсолютные значения DPB (с начала проекта 10,3-12,7 лет) могут быть привлекательными для потенциального инвестора.

Сравнение результатов, полученных для вариантов 1 и 2, демонстрирует экономическую эффективность перехода к оптимальным начальным параметрам пара ПГУ-КЭС. Это проявляется в снижении дисконтированного срока окупаемости DPB практически на один год и увеличении внутренней нормы доходности проекта на 0,92% (абс). Как отмечено выше, капитальные вложения, принятые для варианта 2, в действительности могут быть снижены за счет увеличения единичной мощности паротурбинного оборудования и уменьшения количества вспомогательного оборудования — в этом случае возможно повышение экономической эффективности.

Несмотря на некоторое снижение показателей тепловой экономичности при дожигании топлива в схеме ПГУ-КЭС (табл. 1), вариант 3 при указанных условиях расчета обладает наибольшей экономической эффективностью (табл. 3). Это связано с тем, что рассматривается не ПГУ в целом, а только вновь сооружаемая часть и все, что с ней связано. И если при дожигании производство электроэнергии (нетто) для ПГУ-КЭС в целом увеличивается примерно на 10% (табл. 1, вар. 1 и 3), то с точки зрения паротурбинной «пристройки» прирост годового отпуска электрической энергии для варианта 3 составляет на 48,7% больше, чем в варианте 1 (табл. 2). Именно этот прирост определяет экономическую эффективность варианта реконструкции и при определенном соотношении цены топлива и тарифа на электроэнергию вызывает более интенсивный приток наличных средств. В итоге, несмотря на увеличенные капитальные вложения и дополнительные затраты на дожигаемое топливо (табл. 2), данный вариант имеет лучшие экономические показатели. В зависимости от ситуации на рынке выходные показатели эффективности инвестиционного проекта могут существенно изменяться. Был проведен анализ изменения эффективности в зависимости от тарифов на отпущенную электроэнергию, при этом в качестве основного критерия был принят дисконтированный срок окупаемости (ВРВ) с начала реализации проекта (рис. 2). Из анализа результатов видно, что изменение тарифа на электроэнергию достаточно интенсивно влияет на величину ВРВ. Так, рост текущих тарифов на 30% приведет к уменьшению дисконтированного срока окупаемости на 32-37 мес. (большая величина соответствует варианту 1). Одним из важнейших параметров, определяющих экономическую эффективность проектов создания и реконструкции энергетических объектов, является цена топлива. Особенность рассматриваемой реконструкции заключается в том, что для вариантов 1 и 2, вследствие использования для выработки дополнительной электроэнергии только утилизируемого тепла газов ГТУ, топливная составляющая затрат отсутствует. Поэтому экономическая эффективность данных вариантов не зависит от цены топлива. При рассмотрении эксплуатационных затрат, связанных с работой вновь сооружаемой (надстраиваемой) части ПГУ, для варианта З топливная компонента составляет около 26,5%. Было исследовано, как влияет изменение тарифа на электроэнергию и цены топлива (природного газа) на дисконтированный срок окупаемости. Результаты показали, что изменение тарифов на электроэнергию имеет более существенное значение, чем на топливо. Так, рост цены на отпускаемую электроэнергию на 30% при одновременном увеличении стоимости природного газа на 75% снизит срок окупаемости на 26 месяцев. Это объясняется, прежде всего, малой величиной топливной составляющей в составе общих издержек эксплуатации, а также относительно низкой ценой природного газа на внутреннем рынке.

ВЫВОДЫ: • создание парогазовых установок на базе ГГУ малой и средней мощности — достаточно эффективный способ производства электроэнергии. Все предложенные варианты реконструкции ГТЭС являются экономически эффективными с точки зрения полученных сроков окупаемости и интегральных показателей; • выбор оптимальных начальных параметров паротурбинной части ПГУ экономически оправдан; • при имеющемся на данный момент уровне соотношения цены природного газа и тарифа на электроэнергию использование дополнительного сжигания топлива в схемах ПГУ-КЭС может быть экономически оправдано.

Экономическая целесообразность форсированного внедрения ПТУ и ГТУ при обновлении тепловых электростанций

Наибольшего снижения удельных расходов топлива при обновлении ТЭС можно достичь за счет внедрения прогрессивных технологий производства электроэнергии: для ТЭС на газе — это парогазовый цикл, газотурбинные надстройки паросиловых блоков и газовые турбины с утилизацией тепла; для ТЭС на угле — экологически чистые технологии его сжигания в паротурбинном цикле.

Е. Волкова, Т. Новикова, В. Шульгина — ИНЭИ РАН

Старение оборудования электростанций и связанная с этим необходимость полной или частичной его замены -одна из основных проблем развития электроэнергетики в ближайшие годы. Обновление позволяет не только сохранить и даже несколько увеличить мощность действующих станций, но также повысить эффективность использования органического топлива.

В настоящее время инвестиции в разработку новых типов оборудования ограничены, поэтому предлагаются менее капиталоемкие способы обновления — восстановление ресурса и модернизация оборудования на действующих электростанциях.

В рамках работы над «Концепцией технического перевооружения. » ИНЭИ РАН провел экономический анализ трех предлагаемых в настоящее время способов обновления устаревшего оборудования ТЭС: восстановление ресурса, установка модернизированного оборудования и внедрение новой техники. Сравнение проводилось для типовых групп (так называемых «технологий»), классифицированных по принципу относительной близости технико-экономических показателей — тип блока (ТЭЦ или КЭС), начальные параметры пара и вид используемого топлива (табл. 1).

Таким образом, в одну группу попали, например, конденсационные энергоблоки разной единичной мощности с начальным давлением пара 240 ата.

При первом способе обновления — восстановлении ресурса -мощность оборудования не меняется. При замене этих блоков модернизированными происходит некоторое увеличение их мощности (например, К-330-240 и К-850-240 вместо К-300-240 и К-800-240). При замене старого оборудования прогрессивным на действующих площадках устанавливаются ПГУ примерно такой же мощности (например, ПГУ-325 вместо К-300-240). Для всех типовых групп были приняты укрупненные технико-экономические показатели, прогнозируемые для каждого способа обновления. Ранжирование «технологий» по минимуму удельных приведенных затрат позволило выбрать наиболее эффективные способы обновления: для ТЭС на угле — это установка модернизированного оборудования, для ТЭС на газе — замена паротурбинных блоков парогазовыми установками и ГТУ с котлами-утилизаторами. В рамках «Программы обновления ТЭС. » ИНЭИ РАН определил коммерческую эффективность трех вариантов обновления конкретных тепловых электростанций в период до 2010 года. Варианты были разработаны институтом «Теплоэлектропроект» с учетом динамики выбытия оборудования в результате старения и на основе рекомендованных выше способов обновления для каждой типовой группы. По существу, проводилось сравнение двух путей обновления ТЭС. Один из них — малозатратный, но в то же время топливоемкий, технически отсталый путь, связанный с восстановлением ресурса оборудования. Другой — прогрессивный, обеспечивающий снижение потребности в топливе, но капиталоемкий, требующий внедрения модернизированной и новой техники. Вариант 1 представляет собой реализацию первого пути. т.е. оборудование всех ТЭС. по мере достижения турбинами индивидуального ресурса подлежит восстановлению (табл. 2).

Технически прогрессивным является вариант 2. В этом случае оборудование всех ТЭС, работающих на угле, заменяется новым, с некоторым увеличением его мощности. На ТЭС, работающих на газе, оборудование частично модернизируется, а частично заменяется парогазовыми и газотурбинными установками.

Вариант 3, самый оптимистичный, является некоторой модификацией 2-го. В этом варианте осуществляется форсированное внедрение ПГУ и ГТУ, в том числе на некоторых ТЭС, где ресурс агрегатов заканчивается после 2010 года.

Для сопоставимости все варианты были приведены к одинаковому энергетическому эффекту (по мощности и полезному отпуску электроэнергии). Выравнивание по мощности условно выполнено через новую замыкающую КЭС, работающую на угле. В качестве расчетного принят период 2003-2030 гг.

Безусловно, при формировании технико-экономических показателей был принят ряд допущений. Например предполагалось, что при восстановлении ресурса экономичность действующего оборудования не повышается, поэтому удельный расход топлива был принят на уровне усредненных отчетных данных за 2001 год для соответствующих групп оборудования. При модернизации и внедрении новой техники этот показатель принимался в соответствии с ожидаемым проектным.

При определении удельных капиталовложений было принято, что при обновлении полностью или частично заменяется оборудование электростанции. Причем его стоимость составляет 50% капиталовложений в новую паротурбинную ТЭС на газе, 60% — в ТЭС на угле и около 70% — в новую парогазовую или газотурбинную ТЭС.

В качестве основного критерия при сравнении вариантов был принят максимум чистого дисконтированного дохода (ЧДД).

Для определения коммерческой эффективности ежегодно на протяжении всего расчетного периода проводилось сопоставление двух финансовых потоков: дохода от реализации электроэнергии и всех затрат. Затем ежегодные сальдовые потоки с помощью коэффициента дисконтирования приводились к сегодняшнему уровню цен и суммировались за весь расчетный период. Эта итоговая сумма и отражала ЧДД, получаемый в результате реализации каждого из вариантов обновления.

Расчет коммерческой эффективности осуществлялся при прогнозируемых ценах на топливо и электроэнергию. При этом были рассмотрены связанные между собой изменения цен на топливо и электроэнергию, характеризующие их умеренный интенсивный рост. Кроме того, были определены предельные тарифы электроэнергии, при которых будет достигнута самоокупаемость в каждом из трех вариантов обновления.

Результаты расчетов показали, что максимальный расход топлива наблюдается в варианте 1 (табл. 3),

Результаты оценки коммерческой эффективности трех вариантов обновления ТЭС ЕЭС России Таблица 3

при котором работы по восстановлению ресурса оборудования не обеспечивают повышение его тепловой экономичности. Самым экономичным с точки зрения расхода топлива является вариант 3 с максимальным объемом внедрения новой техники. За счет экономии газа, достигаемой при обновлении действующих паротурбинных ТЭС и составляющей около 7 млн т у.т. в год, можно обеспечить этим топливом как модернизированные ТЭС, так и новые парогазовые электростанции. В результате этого мощность ПГУ и ГТУ к 2010 году можно довести до 12. 13млнкВт.

Безусловно, столь значительная экономия топлива в варианте 3 достигается за счет дополнительных инвестиций, в 1,5 раза больших по сравнению с вариантом 1. Это существенно осложняет возможность реализации прогрессивного варианта обновления. В соответствии с принятым критерием (максимум ЧДД) именно вариант 3 с максимальным внедрением технически нового и модернизированного оборудования является самым эффективным, в то время как реализация варианта 1 неэффективна вообще (ЧДД 57,338 МВт). При выводе из строя ГТУ (12,9 МВт) 100%-я мощность оставшихся установок составит 58,7 МВт (> 57,338 МВт), но при этом необходимо увеличить количество дожигаемого топлива для обеспечения паром двух паровых турбин.

На втором этапе исполнения проекта планируемая мощность для обеспечения потребителей 1-й категории составляет 50,032 МВт. При выводе из строя паровой турбины, 100%-я мощность оставшегося оборудования составляет 61,6 МВт (> 50,032 МВт). Этим обеспечивается не только 1-я категория, но и полная нагрузка завода.

При выходе из строя ГТУ 100%-я мощность составит 48,7 МВт ( 3. СО — 58 мг/нм 3 ;

■ температура парогазовой смеси за установкой — 25. 35°С;

■ утилизация воды из уходящей газопаровой смеси (расчетная) -1,0. 1Д;

Содержание солей в циркулирующей котловой воде при длительной непрерывной работе установки практически постоянно и даже уменьшается вследствие эффективной продувки сепаратора.

В ходе пусконаладочных работ были выполнены сравнительные испытания на экономичность установки ГПУ-16К и агрегата ГПА-16 с газотурбинным двигателем ДЖ59. Выбор ГПА-16 для сравнения с установкой, работающей по схеме «Водолей», не случаен и обусловлен следующими факторами:

■ одинаковая номинальная мощность установок;

■ широкое применение двигателей ДЖ59 на компрессорных станциях Украины и России (более 150 шт.);

■ идентичность условий работы (сравниваемые установки эксплуатировались параллельно в одном цехе компрессорной станции).

Результаты сравнительных испытаний (рис. 2) подтвердили снижение потребления топливного газа установкой ГПУ-16К по сравнению с агрегатом ГПА-16 на 27-32%.

Задачи опытно-промышленной эксплуатации и перспективы применения установки

В настоящее время осуществляется опытно-промышленная эксплуатация установки ГПУ-16К в условиях компрессорной станции при работе на магистральном газопроводе «Прогресс».

В процессе эксплуатации установки, которая будет продолжаться в течение 4000 часов, необходимо:

■ определить основные эксплуатационные параметры оборудования ГПУ-16К и их изменение в процессе работы;

■ на основании анализа эксплуатации оборудования разработать мероприятия по его оптимизации, внедрить их и проверить эффективность;

■ разработать рекомендации по промышленной эксплуатации газоперекачивающей установки и подготовить ее к проведению Межведомственных испытаний.

На 1 августа 2004 года наработка ГПУ-16К составила 1600 часов. Результаты эксплуатации установки, работающей по схеме «Водолей», подтвердили правильность принятых решений по проектированию ее узлов и агрегатов и по выбору оборудования. Это создает предпосылки к дальнейшему применению таких установок на компрессорных станциях магистральных газопроводов.

В частности, согласно планам реконструкции ДК «Укртрансгаз» предусмотрено введение ГПУ-16К вместо ГПА-16 № 4 на компрессорной станции «Ставищенская» (УМГ «Черкассытрансгаз»). Такое решение позволяет использовать уже опробованные вспомогательные технологические системы для второй установки ГПУ-16К.

Учитывая, что срок эксплуатации ГПА-16 на отдельных компрессорных станциях Украины и России составляет более 10 лет, использование при их модернизации установок ГПУ-16К является разумной альтернативой.

Теплофикационные парогазовые установки для замены устаревшего оборудования ТЭЦ ОАО «Ленэнерго»

В статье приведены основные характеристики, тепловые схемы и состав оборудования теплофикационных парогазовых установок (ПГУ), разрабатываемых для замены устаревших паросиловых блоков. Описан способ регулирования электрической мощности теплофикационных ПГУ с котлами-утилизаторами при заданной тепловой мощности.

B. Безлепкин — С.-Петербургский государственный политехнический университет

C. Лапутько — ОАО «Ленэнерго»

В настоящее время оборудование теплофикационных паротурбинных установок ряда действующих ТЭЦ ОАО «Ленэнерго» выработало расчетный ресурс. Стоимость производства электрической и тепловой энергии на устаревших ТЭЦ значительно превышает средний показатель по энергосистеме и имеет тенденцию к дальнейшему увеличению. Чтобы обеспечить конкурентоспособность на рынке энергии, необходимо заменить устаревшее паротурбинное оборудование этих ТЭЦ на новое, более совершенное.

Мировой опыт показывает, что наиболее эффективными теплофикационными установками электростанций на органическом топливе являются парогазовые установки. Для них характерны высокая термическая эффективность, хорошие маневренные и экологические характеристики, высокая надежность и относительно низкая стоимость установленного киловатта.

Парогазовые установки, предназначенные для С.-Петербурга, должны быть адаптированы к особенностям работы энергосистемы Ленэнерго. Это существенная неравномерность суточного и недельного потребления электрической энергии; почти 100%-я доля природного газа в топливном балансе ТЭЦ; отсутствие на большинстве действующих ТЭЦ свободных площадей для размещения нового оборудования; жесткие требования к экологическим характеристикам теплофикационных установок.

Для выполнения предпроектных проработок по сооружению теплофикационных парогазовых установок была определена следующая очередность электростанций: Центральная ТЭЦ; ТЭЦ № 5; первые очереди ТЭЦ № 14 и № 15. При этом учитывалось состояние оборудования, а также существующие и ожидаемые нагрузки в зоне расположения ТЭЦ.

В районе расположения Центральной ТЭЦ (левобережная часть центра С.-Петербурга) наблюдается рост потребления тепловой и электрической энергии. По прогнозам, полезный отпуск электрической энергии составит здесь в 2005 году 1,4 млрд кВт'Ч, а в 2010-м -1,7 млрд. Отпуск тепловой энергии составит 18,4 и 19,9 млн ГДж соответственно.

Для покрытия прироста нагрузки электрогенерирующие мощности района должны быть увеличены примерно на 160 МВт.

Отмечается также значительная суточная и недельная неравномерность потребления электрической энергии. На рис. 1 приведен график производства и потребления электрической энергии в энергосистеме Ленэнерго в период максимальной нагрузки — 25 декабря 2001 года. Отношение минимальной величины электрической нагрузки к максимальной составляет 0,685. В выходные дни нагрузка снижается еще на 15%.

В настоящее время разница в нагрузке покрывается в основном за счет покупки электрической энергии на ФОРЭМ, что позволяет ТЭЦ работать на режиме, близком к номинальному. Однако пересмотр баланса электроэнергии и мощности в энергосистеме в ближайшем будущем потребует регулирования электрической мощности практически всех городских ТЭЦ С.-Петербурга.

Тепловая нагрузка в этом районе города также отличается заметной неравномерностью. В ночное время рабочих суток января отпуск тепловой энергии снижается на 16%, а в период максимального водозабора возрастает на 10% от ее номинального значения.

Район расположения Центральной ТЭЦ не имеет ЛЭП достаточной пропускной способности для получения электрической энергии от других электростанций энергосистемы.

Для решения проблемы могут быть рекомендованы теплофикационные парогазовые установки с котлами-утилизаторами (ПГУКУ). Они имеют максимально высокую термическую эффективность на конденсационных режимах и минимальную стоимость установленного киловатта среди всех типов парогазовых и паротурбинных установок. Кроме того, отличаются малыми габаритами.

Выбор основного оборудования для ПГУКУ ориентирован на отечественных производителей и на использование в составе ПГУ агрегатов, характеристики которых отвечают современным требованиям. Таким образом, для разработки теплофикационных ПГУ выбраны три газотурбинные установки: ГТЭ-160 производства СП Интертурбо (лицензионная версия установки V94.2 фирмы Siemens), ГТЭ-110 (совместная разработка НПО «Сатурн» и НПКГ «Зоря»-«Машпроект») и GT8C (компании Alstom).

Первоначально в качестве одной из основных газотурбинных установок для ПГУ рассматривалась ГТЭ-60 Ленинградского металлического завода. Однако в 2001 году завод объявил о прекращении работ по созданию этой ГТУ, поэтому в качестве третьей установки выбрана GT8C, основные энергетические параметры которой практически совпадают с характеристиками ГТЭ-60. В настоящее время продолжаются работы по созданию отечественных газотурбинных установок мощностью 60 МВт. Поэтому на последующих этапах разработок теплофикационных ПГУ представляется возможным вернуться к ГТЭ-60.

Котлы-утилизаторы и паровые турбины для ПГУ либо уже освоены отечественной промышленностью, либо без проблем могут быть изготовлены и поставлены на ТЭЦ. Не вызывает сомнений и возможность комплектации ПГУ таким серийным отечественным энергетическим оборудованием, как электрические генераторы, питательные насосы и др.

Принципиальная тепловая схема теплофикационной ПГУКУ приведена на рис. 2.

В состав ПГУ входит одна газовая турбина, котел-утилизатор и паровая турбина. При этом газовая и паровая турбины расположены на общем вал) и работают на один электрический генератор. Такое прогрессивное решение приводит к снижению капиталовложений.

Основным и резервным топливом ГТУ является природный газ. Дополнительное сжигание топлива перед котлом-утилизатором не предусматривается.

Основные характеристики ПГУ с котлом-утилизатором Таблица 1

Приведенная на рис. 2 тепловая схема обеспечивает оптимальные параметры рабочих тел и высокую термическую эффективность ПГУ практически на всех эксплуатационных режимах. Основные результаты расчета тепловой схемы парогазовой установки с котлом-утилизатором приведены в табл. 1. Расчеты выполнены при следующих исходных данных: сопротивление входного тракта ГТУ — 1 кПа, выхлопного тракта — 3 кПа, коэффициент электромеханических потерь в турбинах — 0,982 .

Анализ данных табл. 1 показывает, что на базе рассмотренных ГТУ могут быть созданы современные теплофикационные парогазовые установки электрической мощностью 230, 160 и 75 МВт. Тепловая мощность этих ПГУ равна соответственно 187, 138 и 65 МВт. На конденсационном режиме коэффициент использования теплоты топлива у парогазовых установок равен 0,51. 0,519, тогда как у самых современных теплофикационных паротурбинных установок этот показатель составляет 0,4. Коэффициент электрической мощности у таких ПГУКУ равен 0,54, что на 30% выше, чем у лучших паротурбинных ТЭЦ.

Из табл. 1 видно, что на теплофикационных режимах термическая эффективность ПГУ с котлами-утилизаторами примерно на 5% ниже, чем у паротурбинных ТЭЦ. Поэтому в периоды спадов электрической нагрузки, продолжительность которых в энергосистеме Лен-энерго составляет 2800. 3000 ч/год, в первую очередь следует снижать электрическую мощность ПГУКУ.

Необходимость разгрузки обусловливается и тем, что тариф на электроэнергию в ночное время в 2,5 раза ниже, чем в остальное время суток.

Вместе с тем мировой опыт показывает, что регулировочный диапазон известных теплофикационных ПГУКУ близок к нулю. Этот серьезный недостаток приводит к значительным потерям теплоты топлива и трудностям в эксплуатации, Выполненные нами работы по увеличению регулировочного диапазона ПГУКУ позволили найти способ снижения электрической мощности теплофикационных ПГУ в периоды спадов электрической нагрузки при сохранении тепловой мощности на заданном уровне.

Предложенный способ включает в себя как известные, так и новые, разработанные нами варианты разгрузки ПГУКУ. К известным способам относятся: закрытие входного направляющего аппарата (ВНА) компрессора ГТУ, закрытие поворотной диафрагмы части низкого давления (ЧНД), включение пикового сетевого подогревателя. Новым является повышение давления в отопительных отборах турбины путем обвода сетевых подогревателей по воде. Этот способ предложен и опробован нами практически на всех типах отечественных теплофикационных паровых турбин.

Регулирование электрической мощности теплофикационных ПГУКУ реализуется следующим образом:

■ при снижении электрической нагрузки — закрывают ВНА компрессора, затем поворотную диафрагму ЧНД; включают в работу ПСП; повышают давление пара в отборах турбины путем обвода сетевых подогревателей по байпас-ному трубопроводу; конденсат греющего пара сетевых подогревателей (в обход газового подогревателя) направляют в деаэратор; газовый подогреватель конденсата переводят на подогрев сетевой воды с помощью водоводяного теплообменника и циркуляционного насоса;

■ при увеличении электрической нагрузки — открывают ВНА, поворотную диафрагму, выключают из работы ПСП; снижают давление в отборах турбины путем отключения байпасного трубопровода; конденсат направляют в газовый подогреватель; восстанавливают схему подогрева сетевой воды в сетевых подогревателях паровой турбины.

Этот способ не требует значительных изменений в тепловой схеме ПГУКУ и (или) установки дополнительного оборудования. Способ может быть реализован практически без финансовых затрат.

Основные результаты расчетов ПГУ-75 на режимах разгрузки приведены в табл. 2 и показаны на рис. 3. График иллюстрирует характер изменения электрической и тепловой мощности при использовании предложенного способа разгрузки ПГУКУ.

Крестиками на рисунке показаны зависимости, характеризующие изменение электрической и тепловой мощности ПГУКУ при закрытии ВНА (вариант 1), кружками — при закрытии ВНА, закрытии поворотной диафрагмы ЧНД и включении ПСП (вариант 2), треугольниками — при закрытии ВНА, закрытии поворотной диафрагмы ЧНД, включении ПСП, обводе ПСГ и переводе ГПК на подогрев сетевой воды (вариант 3).

Из табл. 2 и рис. 3 видно, что при использовании предложенного способа разгрузки электрическая мощность ПГУКУ снижается на 37% — этого вполне достаточно для эффективного регулирования электрической мощности в энергосистеме Ленэнерго. Тепловая мощность установки при этом уменьшается на 16%, что в большинстве случаев можно считать приемлемым с учетом ночного естественного снижения тепловой нагрузки за счет горячего водоснабжения. Из рисунка видно также, что при снижении электрической мощности ПГУКУ на заданные 30% ее тепловая мощность снижается на 10%. При этом ГТУ, ПТУ и установку подогрева сетевой воды располагают в разных коэффициент использования теп лоты топлива уменьшается с 0,871 до 0,863, то есть всего на 0,8%.

Размещение нового оборудования на площадках действующих ТЭЦ, особенно старой постройки, — достаточно сложная задача. В данном случае нельзя предложить типовую компоновку, пригодную для многих объектов. Для каждого объекта необходимы индивидуальные технические решения. Вместе с тем существует ряд типовых компоновочных решений, применяемых в этих случаях.

Газотурбинную установку и котел-утилизатор располагают на одной оси, что до минимума сокращает длину высокотемпературного газохода. В составе ПГУ используют вертикальный котел-утилизатор — это позволяет расположить дымовую трубу на каркасе котла и значительно сократить строительные габариты установки. ГТУ и ПТУ в установку подогрева сетевой воды располагают в разных частях здания действующей ТЭЦ. Воздухозаборное устройство компрессора ГТУ устанавливают на крыше машинного зала. Такие технические решения существенно облегчают размещение разрабатываемых ПГУ на ограниченных площадях действующих ТЭЦ. В ряде случаев (при жестких ограничениях по площадям, проблемах с финансированием) для замены устаревшего оборудования действующих ТЭЦ может быть рекомендована ПГУКУ малой мощности, созданная на базе отечественного оборудования. Прототипом такой установки является опытно-промышленная теплофикационная газотурбинная установка с котлом-утилизатором на Безымянской ТЭЦ (ОАО «Самараэнерго»). В ее состав входит газотурбинная установка мощностью 25 МВт, созданная на базе авиадвигателя НК-37, котел-утилизатор ТКУ-б производства ОАО «Красный котельщик» и газовый подогреватель сетевой воды. Небольшие размеры и расположение котла-утилизатора над выхлопной частью ГТУ позволяют разместить эту установку даже в стесненных условиях устаревших ТЭЦ.

Выполненные расчеты по окупаемости парогазовых установок зарубежного производства, при существующих в настоящее время ценах на природный газ и электроэнергию, превышают расчетный срок службы ПГУ.

При изготовлении отечественными производителями таких элементов парогазовых установок, как котлы-утилизаторы, паровые турбины, электрические генераторы, теплообменники, воздухо-заборные устройства, системы шумоглушения, компрессоры для повышения давления природного газа и др. — стоимость ГТУ и ПГУ может быть значительно ниже. С учетом изложенного сроки окупаемости инвестиций в строительство ПГУКУ на действующих ТЭЦ ОАО «Ленэнерго» могут быть близки к мировым.

Повышение эксплуатационных характеристик энергетических установок

В данной работе рассмотрены способы повышения эксплуатационных параметров паротурбинных установок путем интегрирования в их состав газотурбинного энергоблока, основным из которых является утилизация выхлопа газовой турбины для производства пара с требуемым давлением и температурой. Приведены схемы модернизации установок:

— с использованием газовых турбин с частичным окислением,

— с внешним сгоранием топлива,

Михаил Коробицын — Центр фундаментальных энергетических исследований, Нидерланды

Максимальная температура рабочего тела в газовой турбине значительно выше, чем в паровой, а температура выхлопа гораздо выше температуры наружного воздуха. Поэтому при объединении газовой и паровой турбин в одном цикле общий кпд установки может быть значительно увеличен. Современные энергетические установки комбинированного цикла имеют кпд около 60% из расчета по низшей теплотворной способности топлива (LHV), при относительно низких параметрах парового цикла. Кпд паротурбинных установок со сверхкритическими параметрами пара составляет не более 50%.

Развитие показателей эффективности энергетических установок с прямым (непосредственным) сгоранием топлива представлено на рис. 1. Из результатов различных исследований и разработок по увеличению кпд при выработке электроэнергии следует, что такие установки достигли предела по этому показателю. Повышение максимального давления в цикле Ренкина требует увеличения температуры для полного использования расширения (до режима конденсации), например: при давлении 300 бар температура пара должна быть 650°С. Такие параметры могут быть достигнуты только при использовании специальных высокотемпературных марок стали для котлов и паровых турбин. Это требует дальнейших интенсивных исследований и разработок в области металлургии.

В оптимизации рабочих параметров паровых турбин с 60-х годов XX века практически не было прогресса. Вновь построенные сверхмощные установки имеют те же, а иногда даже более низкие параметры, например, по сравнению с энергетической установкой Eddystone, построенной более 30 лет назад. Для перспективных паротурбинных установок планируется достигнуть кпд около 50%. Использование суперсплавов и аустенитных марок стали позволит получать пар с высокими параметрами (650°С/325 бар).

С другой стороны, достижения в производстве реактивных двигателей и возможность использования дешевого природного газа способствовали быстрому развитию газотурбинных технологий. Современные газотурбинные установки имеют кпд 42% в простом цикле и 58% в комбинированном. Газотурбинный цикл не требует высокого давления, и в современных двигателях степень повышения давления обычно ниже 40. Температура рабочего тела в современных газовых турбинах 1400°С. Таким образом, используются продукты горения с высокой рабочей температурой, близкой к адиабатической температуре пламени. В котлах же с прямым горением максимальная температура пара не так высока. Большая разница между температурой продуктов горения и температурой рабочего тела (пара) ограничивает кпд. Следовательно, интеграция газовой турбины в состав паротурбинной установки может существенно улучшить эксплуатационные показатели.

Необходимо рассмотреть различные варианты интеграции ГТУ в зависимости от того, какие задачи выполняет газовая турбина.

Использование выхлопа газовой турбины в качестве теплоносителя

Выхлоп газовой турбины имеет температуру 42О. 55О°С, достаточную для производства пара требуемых параметров. Существующий паровой котел заменяется в данном случае паровым котлом-утилизатором (HRSG). Такая схема называется модернизацией в комбинированный цикл или полной модернизацией. В одном из вариантов (параллельном) для производства пара используются и паровой котел, и котел-утилизатор. Другим вариантом является утилизация выхлопа газовой турбины путем подогрева воды перед подачей в паровой котел.

Использование выхлопа газовой турбины в качестве подогретого воздуха для дожигания в его остаточном кислороде дополнительного топлива

Выхлопные газы ГТУ содержат 14-16% кислорода. Можно использовать этот выхлоп в качестве подогретого воздуха, подавая его в топку котла для дожигания дополнительного топлива. Теоретически расход выхлопных газов, подаваемых из газовой турбины и необходимых для обеспечения требуемого количества кислорода, должен быть на 30% больше расхода обычного воздуха. Но при высокой температуре выхлопа сокращается необходимое количество топлива и, следовательно, количество кислорода. Данная концепция известна как модернизация с использованием «горячего ветра» (горячего наддува — hotwindbox). В этом случае общий кпд установки увеличивается на 3,8%, а количество производимой электроэнергии — на 20-30%.

Использование выхлопа газовой турбины в качестве топлива (неполное окисление топлива в ней)

Частичное окисление метана происходит при субстехиометрических условиях и обычно при высоком давлении. В результате реакции образуется смесь водорода и моно-ксида углерода (СО). Замена обычной камеры сгорания газовой турбины на реактор частичного окисления дает возможность вырабатывать синтетический газ и электроэнергию. Полученный газ может быть направлен в топку парового котла в качестве подогретого топлива.

Интеграция газовой турбины в состав паротурбинной установки (комбинированный цикл с внешним горением)

Уголь, являясь твердым топливом, не пригоден для использования в газовых турбинах, но его химическая энергия может быть направлена в газовую турбину косвенным (непрямым) способом. В установках комбинированного цикла с внешним горением (EFCC) сжатый воздух нагревается в теплообменнике, установленном в топке парового котла. В результате разница между температурой рабочего тела и температурой продуктов горения сокращается, обеспечивая тем самым улучшение эксплуатационных параметров всей установки.

Утилизация твердого мусора

Одним из вариантов объединения газовой турбины и парового котла является интеграция их в установку по утилизации мусора. В связи с агрессивной природой мусора, его утилизация в ГТУ вызывает определенные трудности. В этом случае необходимо избегать шлаковых отложений, общей коррозии и особенно коррозии котла, а также обеспечить достаточное время для сгорания содержащихся в мусоре компонентов. Это достигается размещением трубной обвязки испарителя во втором канале (газоходе), система труб пароперегревателя располагается во втором или третьем канале (газоходе), где температура топочного (дымового) газа падает до приемлемого уровня.

Топочный газ, проходя через котел, охлаждается с 1000°С в радиационной секции до 600. 800°С на входе в конвекционную зону. Пройдя систему труб испарителя, газ направляется в пароперегреватель и экономайзер. В результате перегретый пар имеет сравнительно низкую температуру (около 400°С). Температура выхлопа не опускается ниже 200°С, что предотвращает конденсацию агрессивных компонентов. Но в итоге ограничивается кпд парового цикла установки по утилизации мусора.

Некоторое улучшение параметров цикла может быть достигнуто увеличением температуры пара. Для этого необходим дополнительный подогрев воздуха, направляемого в топку котла. Высокая температура выхлопа газовой турбины позволяет улучшить эксплуатационные показатели установки для утилизации мусора. Теплота выхлопных газов может быть использована в котле-утилизаторе, который расположен за газовой турбиной и вырабатывает пар для паровой турбины. Такой вариант параллельной модернизации можно реализовать несколькими путями. Первый — направить пар с низкой температурой и давлением из котла, сжигающего мусор, в ступени паровой турбины среднего давления, а пар из котла-утилизатора, имеющий большие параметры, — в турбину высокого давления. Второй — направить пар из котла установки по утилизации мусора в пароперегреватель/промежуточный пароперегреватель котла-утилизатора, а затем в паровую турбин); Схема параллельной модернизации приведена на рис. 2. Однако в обеих схемах интеграции газовая турбина играет определяющую роль — на нее приходится до 80% расхода топлива, что делает агрегат по утилизации мусора вспомогательным блоком энергетической установки комбинированного цикла.

Другой возможной схемой интеграции является утилизация выхлопа газовой турбины в качестве подогретого воздуха для дожигания в нем дополнительного топлива. В этом случае вместо котла-утилизатора используется только блок пароперегревателя для увеличения температуры пара. Пройдя через пароперегреватель, выхлопные газы направляются в топочную камеру мусоросжигающей установки (рис. 3). Данная схема с горячим наддувом требует намного меньше теплообменных поверхностей, чем параллельная схема.

Анализ эксплуатационных параметров различных схем модернизации, проведенный на основе газовой турбины Frame 6 компании GE, показал, что кпд параллельной схемы немного выше, чем у схемы с горячим наддувом. Однако это было достигнуто за счет газовой турбины — доля природного газа в используемом топливе составила 55%. Кроме того, зона теплообмена в параллельной схеме в два раза больше, чем в схеме с горячим наддувом. Соотношение между величиной неиспользуемой фракции в топливе и общим кпд установки приведено на рис. 4. Линией соединены показатели кпд для двух установок — мусоросжигающей и установки комбинированного цикла, работающей только на природном газе. Анализ эксергии (термодинамическая функция располагаемой работы) показывает положительные результаты горения с использованием выхлопа газовой турбины. Потери эксергии в процессе горения падают с 45 до 36%.

Газовая турбина с частичным окислением

В результате реакции частичного окисления топливо не сгорает полностью из-за отсутствия достаточного количества кислорода, и образуется газовая смесь моноксида углерода (СО) и водорода, называемая синтетическим газом. Обычно температура реакции составляет 1300°С при давлении 20. 60 бар. Данные параметры дают возможность включить реактор частичного окисления (ЧО) в газотурбинный цикл. Концепция газовой турбины с реактором ЧО в начале 70-х гг. была предложена Рибессе для каталитического реактора и Христиановичем для газовых турбин, работающих на мазуте. Окисление топлива может быть закончено перед второй ступенью турбины или в топочной камере котла. Предыдущие варианты сравнимы с простым циклом и газотурбинным циклом с промежуточным перегревом в различных конфигурациях и при различных параметрах. Было выяснено, что эксплуатационные параметры двухступенчатой газовой турбины с реактором ЧО сопоставимы с параметрами газотурбинного цикла с промежуточным перегревом. Как показывают исследования Арайя и Кобайяши, достижение высоких эксплуатационных параметров возможно при использовании высокотемпературной ступени из композиционных материалов, армированных углеродным волокном.

Использование газовой турбины с реактором ЧО в цикле может сопровождаться расширением синтетического газа до атмосферного давления, с последующим использованием его в качестве топлива в котле паротурбинной установки (рис. 5.)

Подобная концепция была разработана Масленниковым и Штерепбергом. Согласно ей, выхлоп обыкновенного газогенератора направляется сначала в реактор ЧО, проходит через силовую турбину и затем используется в топочной камере котла. Рост кпд при данной схеме достигает 80% (расчет проводился из условия отношения увеличения вырабатываемой энергии к увеличению потребляемого топлива).

Был произведен анализ эксергии для газовых турбин с регенератором ЧО, эксплуатируемых при максимальной температуре 1400°С и давлении 40 бар с политропическим кпд компрессора 90% и кпд турбины 88%. Было принято, что метан подводится из газопровода с требуемым давлением. Как видно из диаграммы Грассмана (рис. 6), общий эксергический кпд газовой турбины с реактором ЧО составил 85,6%. При этом 13,5% мощности снимается с турбины ГТУ, а 72,1% -эксергия синтетического газа, состоящая из химической (68,1%) и термической эксергии (4%).

В данной схеме химический компонент утилизируется в паротурбинной установке в качестве топлива с тем же самым эксергическим кпд, как и при других схемах. Установленный кпд по эксергии составляет 38,5% (кпд LHV — 40%), мощность, снимаемая паротурбинной установкой, — 26,23%. В противоположность этому при обычной схеме тепловой компонент синтетического газа увеличивает мощность, подводимую в паровой цикл. По расчетам Болланда, для котлов-утилизаторов кпд по эксергии парового цикла изменяется в зависимости от его сложности: 65% — с двумя уровнями давления пара, 70% — с тремя уровнями давления и промежуточным перегревом пара.

Если принять за основу значение 62%, то при использовании теплового компонента вырабатывается дополнительное количество энергии (2,48%). В сумме общий кпд парового цикла по эксергии составит 42,21%, то есть на 3,7% больше, чем при обычной схеме (42,21% против 38,5%). Еще заметнее увеличивается количество вырабатываемой энергии — 26,23% при обычной схеме и 42,21% при схеме с частичным окислением. Увеличение составляет 60 %.

Таким образом, расчеты показывают, что данная схема модернизации является очень эффективной.

Комбинированный цикл с внешним горением

Схемы, рассмотренные выше, были основаны на использовании газовых турбин, которые работают на высококачественном топливе — природном газе или дистилляте. В противоположность этому при комбинированном цикле с внешним горением газовая турбина входит в состав установки, работающей на угле. Она интегрирована таким образом, что дополнительное тепло создается косвенно, с помощью воздухонагревателя, расположенного в топочной камере. Такое расположение позволяет избежать попадания продуктов сгорания угля в турбину, использовать высокотемпературную зону горения, а также произвести пар, необходимый для парового цикла. После подогрева в топочной камере сжатый воздух расширяется в турбине и направляется обратно в топку в качестве подогретого воздуха для сжигания в нем газифицированного угля (рис. 7). Часть этого воздуха может быть направлена в котел-утилизатор (HRSG), который работает параллельно с паровым котлом. При такой схеме продукты сгорания угля не попадают в газовую турбину -это позволяет избежать необходимости очистки горячего газа, а также коррозии турбинных лопаток.

Для нагревания воздуха в теплообменнике до рабочих температур, равных температурам в традиционных ГТУ на входе в турбину, необходимы специальные материалы с высокой термостойкостью. Так как жаропрочные сплавы не могут быть использованы при температуре выше 950. 1000°С, требуется применение керамических материалов. На окончательном этапе нужная температура может быть достигнута сжиганием природного газа в камере сгорания.

В работах Коробицына и Хирса рассмотрен эффект форсированного горения в области воздухонагревателя и использование менее ценных материалов. Рассмотрены варианты использования металлических теплообменников (800°С), оксидных дисперсионных сплавов (980°С) и керамических материалов (1165°С). Последний вариант рассматривался только при применении угля в качестве топлива. Все расчеты проводились для турбины V94.2 компании Siemens. Форсированное горение использовалось для получения необходимой температуры на входе в турбину.

Были получены следующие значения кпд (LHV):

■ для комбинированного цикла при работе только на природном газе — 50,1%;

■ для установок с металлическим воздухонагревателем — 47,7%;

■ для комбинированного цикла с внешним горением с использованием керамических материалов -45,6%;

■ для установок с прямым горением — 34,8%.

На рис. 8 приведено сравнение между потреблением газа при параллельном сжигании и использовании дополнительных поверхностей воздухонагревателя. Таким образом, для получения 1 кВт электрической энергии (из соответствующего количества природного газа), выработанной в комбинированном цикле с внешним горением, потребуются теплообменники:

■ при температуре в цикле 800°С из суперсплавов с площадью

поверхности 35 м2;

■ при температуре 1165°С — из керамических материалов с площадью 65 м2.

Возможны несколько путей модернизации установок прямого горения с использованием газотурбинных технологий. Например, выхлоп газовой турбины может быть использован в установке по утилизации мусора для повышения

температуры производимого пара. В схеме с горячим наддувом внешний перегрев пара обеспечивает оптимальное соотношение между потреблением газа и общей площадью поверхности теплообменника.

Расширение природного газа (с давления в газопроводе до атмосферного) в газовой турбине, в состав которой входит реактор частичного окисления, дает возможность получить синтетический газ. Использование этого газа в топочной камере паротурбинной установки позволяет реализовать очень перспективную схему модернизации.

Замена части трубной обвязки парового котла на воздухонагреватель для газовой турбины улучшает термодинамические показатели паротурбинной установки, увеличивая кпд и количество производимой энергии. При этом повышение эксплуатационных характеристик энергетических установок, работающих на твердом топливе, с использованием газотурбинных технологий не требует чрезмерного расхода природного газа и применения большого количества тепло-обменных поверхностей. Следует отметить, что при всех схемах модернизации требуется дополнительная площадь для установки газовой турбины и вспомогательного оборудования.

Сравнение паросилового блока с Т-265 и энергоблока с двумя ПГУ-170Т

В статье представлено сравнение характеристик при двух вариантах строительства энергоблока № 3 ТЭЦ-27 ОАО «Мосэнерго» — паросилового на базе турбины Т-265 и энергоблока, состоящего из двух парогазовых установок ПГУ-170Т.

И. Долинин, А. Иванов — ОАО «Мосэнерго»

В настоящее время основу отечественной энергетики составляют паротурбинные установки тепловых электростанций. Однако мировой опыт развития энергетики за последние 20 лет показывает, что традиционные паротурбинные установки вытесняются парогазовыми, которые имеют значительно лучшие технические, экономические и эксплуатационные характеристики. Особенно это относится к новому строительству. Газовая турбина ГТД-110 создает предпосылки для переориентации на парогазовые технологии.

ТЭЦ-27 предназначена для обеспечения теплом и электроэнергией северных районов гг. Москвы и Мытищи и выдачи электрической энергии в сеть Мосэнерго.

В соответствии с утвержденным проектом в состав оборудования ТЭЦ-27 должны входить:

■ два энергоблока с турбиной ПТ-80;

■ три энергоблока с турбинами Т-265;

■ девять водогрейных котлов КВГМ-180.

Сейчас в работе находятся два энергоблока по 80 МВт и четыре водогрейных котла.

В связи с особенностью топливного режима ТЭЦ-27 (она уже имеет два независимых источника газоснабжения), а также складывающимся дефицитом тепловой и электрической энергии, представляется необходимым рассмотреть возможность применения парогазовых технологий при дальнейшем расширении ТЭЦ как альтернативу паросиловым блокам с турбинами Т-265.

Для сравнения вариантов предполагается:

1. Вместо паросилового блока использовать парогазовый. Он должен состоять из двух одновальных парогазотурбинных установок ПГУ-170Т с водогрейным котлом КВГМ-180 для выравнивания тепловой мощности.

Исходные данные для расчета эффективности инвестиций по двум вариантам строительства энергоблока № 3 ТЭЦ-27

Различие в «привлекательности» инвестиций обусловлено следующими обстоятельствами:

■ удельные расходы топлива на отпуск электрической энергии для ПГУ на 50 г/кВт*ч ниже, чем для паросилового блока, а на отпуск тепловой энергии в отопительный период в варианте с ПГУ на 10 кг/Гкал выше, зато в летний и переходный периоды на 65 кг/Гкал ниже (рис. 1);

■ коэффициент использования тепла топлива в отопительный период практически одинаковый, летом — на 22 % выше для варианта с ПГУ (рис. 2);

■ при равном годовом отпуске тепловой энергии блок на базе ПГУ отпустит электроэнергии в сети системы на 18% больше при практически одинаковых затратах топлива (рис. 5).

Кроме того, известно, что на таком крупном оборудовании, как блок с Т-265, трудно обеспечить режимы с оптимальными показателями в течение года. Для оценки этого фактора на основании данных производственно-технического отдела Мосэнерго и Теплосети произведено сравнение расчетных и фактических показателей работы второй очереди ТЭЦ-23 ОАО «Мосэнерго» с энергоблоками Т-250 и водогрейными котлами производительностью 180 Гкал/ч. Характеристики районов, обеспечиваемых тепловой энергией ТЭЦ-23, аналогичны характеристикам районов, которые подключены к ТЭЦ-27. В результате оказалось, что оборудование ТЭЦ-23 работает менее экономично, чем ожидалось в соответствии с расчетами. Фактический коэффициент использования тепла топлива на 6-8%, а иногда и до 15% ниже, чем теоретический (рис. 3).

В наибольшей степени это относится к периоду март-октябрь и связано в основном с тем, что фактическая тепловая нагрузка ниже номинальной и имеет место конденсационная выработка.

Сравнительный анализ возможных отказов котельных установок ПГУ и СКД

Удельный вес в МЭ в 2000 г.

Обоснование невозможности отказа ПГУ

Повреждение ПН вследствие дефектов монтажа, ремонта

Проще конструкция, нет сталей аустенитного класса

Разрыв ПН вследствие перегрева металла, высокотемпературной коррозии

Отсутствуют радиационные поверхности нагрева Низкий уровень температур пара и греющих газов

Неисправность регулирующих клапанов, системы регулирования температуры пара

Отсутствуют впрыскивающие пароохладители

Неисправность ТДМ и РВП

Отсутствуют ТДМ, воздухоподогреватель

Неисправность ПЭН, ПТН, гидромуфты и редуктора ПЭНа

Отсутствует гидромуфта ПЭНа

В результате доля электроэнергии, выработанной по теплофикационному циклу с марта по октябрь, ниже расчетной. На практике это означает, что в этот период турбины работают не по тепловому графику и их экономичность резко снижается.

Относительно ТЭЦ-27 можно прогнозировать, что ее реальные тепловые нагрузки будут меньше расчетно-проектных. Несмотря на большую, по сравнению Т-250, пропускную способность бойлеров (13000 куб.м/ч против 8000 куб.м/ч) и более низкий а ТЭЦ (0,4 против 0,47), экономичность блока Т-265 с апреля по октябрь будет ниже расчетной, так как увеличится доля конденсационной выработки в этот период. При этом выигрыш от применения парогазовых технологий только возрастет, так как максимальный эффект достигается как раз при конденсационных режимах. Надежность теплоснабжения имеет большое значение в работе ТЭЦ-27, требуемая температура сетевой воды на выходе из ТЭЦ обеспечивается при нормальной работе оборудования как для варианта с Т-265, так и с ПГУ. Но в случае отключения оборудования (например, при минус 28°С) при передаче всего свободного тепла от действующей части недоотпуск будет составлять в варианте:

Анализируя наиболее часто встречающиеся случаи отказов котельного оборудования Мосэнерго в 2000 году, можно прогнозировать, что для котлов-утилизаторов ПГУ число отказов будет значительно ниже (табл. 5). Это связано с низким уровнем температуры пара и греющих газов, отсутствием радиационных и ширмовых поверхностей нагрева, тягодутьевых механизмов, регенеративных воздухоподогревателей.

Сравнивая затраты на эксплуатацию и ремонт по таким традиционным трудоемким направлениям, как контроль металла трубопроводов и поверхностей нагрева, ремонт и техническое обслуживание вращающихся механизмов, запорной и регулирующей арматуры, можно говорить о снижении трудозатрат в 3-5 раз по сравнению с блоками СКД (табл. 6).

Сравнительные характеристики ремонтно-эксплуатационных затрат блока СКД и 2-х ПГУ Таблица 6

Экологические показатели вариантов с ПГУ ни по одному из параметров не уступают варианту с Т-265.

ВыбросыNOx. В отопительный сезон удельные выбросы ПГУ несколько выше — за счет большей доли выбросов водогрейных котлов, а в летний период на 60 г/МВт-ч ниже, чем для Т-265. В целом за год выбросы оксидов азота ПГУ на 3% ниже (рис. 4).

Шум. Газовая турбина находится в здании и имеет собственное шумопоглощение. У блока с ПГУ нет таких источников шума, как тягодутьевые механизмы. Применение шумоглушителей на всасывании газовой турбины и за котлом-утилизатором смогут обеспечить шумовые характеристики не хуже, чем у блока с Т-265.

Тепловое загрязнение. По сравнению с паросиловым блоком оно будет ниже на 50%. Что касается собственно ГТУ -сложилась необычная ситуация: к энергетикам, с предложением осваивать и эксплуатировать крупную газовую турбину, пришли авиастроители. Пришли с «авиационным» подходом к конструированию, изготовлению, контролю качества. Предложение должно стать реальностью, потому что ГТД-ПО сконструирован на базе высоких авиационных технологий. Весит он почти в 4 раза меньше зарубежных аналогов и является транспортабельным модулем, что позволяет обеспечивать ее ремонт на заводе-изготовителе.

Масштабы внедрения ПГУ и ГТУ в среднесрочной перспективе

Т.В. Новикова, И.В. Ерохина, А.А. Хоршев — ИНЭИ РАН, Москва

В последнее время энергокомпании проявляют повышенный интерес к внедрению прогрессивных — парогазовых и газотурбинных — технологий производства электроэнергии. Так, например, в рамках разработки корпоративного баланса на 2005-2009 гг. дочерние зависимые общества РАО «ЕЭС России» (ДЗО) представили инвестиционные предложения по вводу новых и обновлению действующих паротурбинных электростанций суммарной мощностью около 14 млн кВт (рис. 1). 65% всех инвестиционных предложений — 9 млн кВт — относятся к внедрению прогрессивных технологий, из которых около 8 млн кВт — ПГУ и чуть более 1 млн кВт — ГТУ. Основная часть этих предложений относится к категории нового строительства — 5,8 млн кВт, суммарная мощность предложений по внедрению ПГУ и ГТУ при замене составляет 3,1 млн кВт.

В настоящее время вследствие низкой стоимости топлива, недостаточной надежности и неудовлетворительных технико-экономических показателей нового оборудования, в первую очередь его высокой стоимости, энергокомпании «осторожничают» и рассматривают продление срока службы как основное решение проблемы старения паротурбинного оборудования действующих ТЭС в среднесрочной перспективе. Так, например, предложения ДЗО по продлению сроков эксплуатации устаревшего оборудования в ближайшую пятилетку составляют около 25 млн кВт или 20% суммарной мощности действующих ТЭС. Однако, как показали многочисленные исследования ИНЭИ РАН по оценке эффективности обновления ТЭС, по мере роста стоимости топлива и повышения экономичности нового оборудования энергокомпании будут стремиться к внедрению ПГУ и ГТУ для решения проблемы не только физического, но и морального старения оборудования действующих электростанций.

Традиционно при оценке эффективности проектов нового строительства и обновления в условиях неопределенности, к которым относится среднесрочная и долгосрочная перспектива, в электроэнергетике применялся сценарный подход. Суть данного метода заключается в формировании нескольких сценариев, в которых часть факторов неопределенности принимается в «крайних» значениях, а остальные фиксируются на определенном уровне. Применение этого метода позволяет определить условия успешной реализации проекта, а также выделить критические факторы неопределенности, которые в наибольшей степени влияют на результаты оценки. Иллюстрация использования данного метода в оценке эффективности замены паротурбинного оборудования ТЭС на ПГЭС, ПГУ-ТЭЦ и ГТУ-ТЭЦ при варьировании значений удельных капиталовложений и цен топлива и электроэнергии представлена на рис. 2.

В результате процессов либерализации, приватизации и дерегулирования в электроэнергетике изменились механизмы реализации инвестиционных проектов в отрасли, в том числе возросло количество способов и источников их финансирования. В этом случае применения сценарного подхода к оценке эффективности проектов нового строительства и обновления электростанций недостаточно, так как он не позволяет обоснованно ответить на ключевые для инвестора вопросы: какой доход он получит в результате инвестирования, какова вероятность и возможный размер собственных убытков.

В качестве методического инструментария для оценки эффективности проектов нового строительства и обновления, позволяющего подготовить поле решений для инвестора, ИНЭИ РАН была разработана и апробирована методика риск-анализа. Данная методика предполагает формирование достаточно большого числа сочетаний значений факторов риска (например, колебания цен на топливо, спроса на электроэнергию, изменения технико-экономических показателей ТЭС в результате установки ПГУ и ГТУ), которые задаются случайно на основе использования датчика случайных чисел в границах принятых диапазонов и в соответствии с заданными законами их распределения. При этом закон распределения задается экспертно или по желанию инвестора.

Для каждого сформированного сочетания факторов риска (сценария) оценивается коммерческая эффективность установки ПГУ и ГТУ. На основе статистической обработки результатов расчета эффективности обновления ТЭС строится распределение вероятностей возможной величины дисконтированного дохода (ЧДД) и находится доля сценариев, которые соответствуют его отрицательному значению. Отношение числа таких сценариев к общему количеству сценариев и дает оценку риска инвестиций в обновление ТЭС.

При этом считается, что если вероятность получения убытков:

■ не превышает 25%, то проект обновления ТЭС характеризуется минимальной степенью риска;

■ 25-50% — проект обновления ТЭС обладает повышенной рискованностью;

■ 50-75% — проект обновления ТЭС имеет критический риск;

■ превышает 75% — реализация проекта обновления ТЭС недопустима.

Ниже приводится иллюстрация применения данного методического инструментария для оценки коммерческой привлекательности для инвесторов проектов по замене паротурбинного оборудования ТЭС на ПГЭС, ПГУ-ТЭЦ и ГТУ-ТЭЦ. Следует отметить, что описываемые в примерах объекты являются условными, то есть сформированные для них широкие диапазоны значений факторов риска должны рассматриваться только как иллюстративные.

На основе результатов многочисленных исследований ИНЭИ РАН для анализа выявлены основные факторы риска, влияющие на коммерческую привлекательность обновления ТЭС. Этими факторами являются:

1) превышение сметной стоимости работ по обновлению устаревшего оборудования ТЭС;

2) колебание цен на топливо;

3) изменение спроса на продукцию ТЭС;

4) увеличение продолжительности работ по замене оборудования;

5) изменение технико-экономических показателей ТЭС в результате установки ПГУ и ГТУ (расход топлива, условно-постоянные затраты).

Именно для этих факторов риска были сформированы возможные диапазоны их значений. При этом для ценовых показателей (цена топлива, электроэнергии и тепла) рассмотрены две динамики в соответствии с «Энергетической стратегией России на период до 2020 г.», утвержденной Правительством РФ 28.08.03. Диапазоны технико-экономических показателей ПГУ и ГТУ приняты на основе анализа инвестиционных предложений, представленных энергокомпаниями в рамках разработки корпоративного баланса на 2005-2009 гг. (табл. 1).

Диапазоны факторов риска

Безусловно, при анализе инвестиционной привлекательности обновления конкретных объектов, когда максимально учитываются все индивидуальные особенности эксплуатации ТЭС, диапазоны варьирования значений ряда факторов риска будут значительно сужены и даже могут быть заданы детерминированно.

Для каждого из рассматриваемых объектов с использованием метода Монте-Карло было сформировано 250 различных сочетаний факторов риска (сценариев) и оценена коммерческая эффективность установки ПГУ и ГТУ, результаты которой представлены на рис. 3. Отсюда видно, что инвестиционная привлекательность обновления ТЭС зависит от типа оборудования, устанавливаемого при замене.

Практически безрисковой (т. е. коммерчески привлекательной) считается установка ПГЭС — вероятность получения отрицательного ЧДД при этом составляет лишь 5%. Это означает, что из 250 различных сценариев факторов риска, сформированных случайным образом, лишь в 13 сценариях замены оборудования на ПГЭС возможно получение убытков, величина которых не превысит 50 млн долл. Наиболее вероятный доход, который получит инвестор в результате замены на ПГЭС, составит 100-150 млн долл. Причем достаточно высока вероятность и того, что доход превысит 150 млн долл.

С небольшой натяжкой можно считать безрисковой установку ГТ-ТЭЦ — вероятность получения отрицательного ЧДД при этом составляет 28%, т.е. лишь на 3% превышает верхнюю границу безрискового интервала (что можно принять за погрешность расчетов).

Наиболее вероятный доход, который получит инвестор в результате замены на ГТУ-ТЭЦ, составит 5-10 млн долл. что на порядок ниже по сравнению с ПГЭС.

Самой рискованной считается установка ПГУ-ТЭЦ — вероятность получения убытков при этом составляет 40%. Такая степень рискованности не считается критической, поэтому установка ПГУ-ТЭЦ наряду с предыдущими объектами также считается коммерчески привлекательной. Наиболее вероятный доход, который получит инвестор в результате замены на ПГУ-ТЭЦ, составит 50 млн долл. что сопоставимо с ПГЭС.

Дальнейшим этапом исследования было количественное определение степени влияния каждого фактора риска на эффективность установки ПГЭС, ГТУ-ТЭЦ и ПГУ-ТЭЦ, осуществляемое по специальной процедуре, созданной на основе факторного анализа. Был рассчитан ЧДД каждого способа замены на ТЭС при последовательном изменении значений каждого из факторов риска и фиксированных значениях оставшихся факторов. Ранжирование факторов риска по степени влияния на величину ЧДД показано на рис. 4.

Данный этап исследования является важным. Он позволяет выявить «критические» факторы риска и при оценке инвестиционной привлекательности конкретных объектов разработать комплекс мер по ликвидации этих рисков или минимизации возможного ущерба от их проявления (например, посредством страхования, создания резервных фондов, подписания долгосрочных контрактов на поставку топлива и т.д.).

В иллюстрируемом примере самыми «критичными» для всех способов замены являются показатели: удельные капиталовложения и годовое число часов использования установленной мощности ТЭС. Наиболее значимо фактор удельных капиталовложений проявляется при установке ПГУ-ТЭЦ: при неизменных «благоприятных» значениях прочих факторов риска рост удельных капиталовложений в замену с 175 долл./кВт до 890 долл./кВт более чем на 95% снижает значение ЧДД, достигаемое при благоприятной ситуации. Аналогичный рост удельных капиталовложений в замену на ПГЭС (с ПО долл./кВт до 600 долл./кВт) влияет на ее эффективность в меньшей степени — значение ЧДД, достигаемое при благоприятной ситуации, снижается на 60%. Самым «критичным» фактором при установке ГТУ-ТЭЦ является годовое число часов использования их установленной мощности: при неизменных «благоприятных» значениях прочих факторов риска сокращение годового графика их работы с 7800 до 3000 часов/год значение ЧДД, достигаемое при благоприятной ситуации, снижается более чем на 70%.

Таким образом, уже в ближайшей перспективе складываются достаточно благоприятные условия для широкомасштабного внедрения ПГУ и ГТУ не только при новом строительстве, но и при замене паротурбинного оборудования действующих ТЭС. Наряду с технологической базой разработана адекватная методологическая база, позволяющая повысить обоснованность экономических оценок и качество принимаемых инвестором решений относительно инвестиционной привлекательности действующих ТЭС, и таким образом способствовать активизации инвестиционной деятельности в отрасли.

Список использованной литературы

1.Цанев С.В. Буров В.Д. Ремезов А.Н. Газотурбинные и парогазовые установки тепловых электротанций: Учебное пособие для вузов / Под ред. С.В. Цанева- М. Издательство МЭИ, 2002.- 584 с.

2. Паровые и газовые турбины: Уебник для вузов / М.А. Трубилов, Г.В. Арсеньев, В.В. В.В. Фролов и др.; Под ред. А.Г. Костюка, В.В. Фролова – М. Энергоатомиздат, 1985.- 352 с.

3.Попырин Л.С. Штромберг Ю.Ю. Дильман М.Д. Надежность парогазовых установок//Теплоэнергетика, № 7, 1999.

4.Попырин Л.С. Волков Г.А. Дильман М.Д. Обоснование вида структурной схемы конденсационных парогазовых установок с учетом надежности //Известия РАН. Энергетика, № 3, 2000.

5. А. Виноградов, А. Григорьев Оценка технико-экономической эффективности модернизации ГТУ-ТЭС с использованием парогазовой технологии.// Газотурбинные технологии. 2004 №1

6. Е. Волкова, Т. Новикова Экономическая целесообразность форсированного внедрения ПГУ и ГТУ при обновлении тепловых электростанций // Газотурбинные технологии. 2004 №1

7. С. Костин, А. Пак Комплексный подход к строительству и реконструкции электростанций с применением ПУ и ПГУ.// Газотурбинные технологии. 2004 №1

8. Ю.С. Бухолдин, В.М. Олефиренко Отработка технических решений на собственных электростанциях – залог надежной работы оборудования у заказчика.// Газотурбинные технологии. 2004 №4

9.А.И. Виноградов, Н.Р. Джапаридзе Конденсационная парогазовая электростанция для надежного энергоснабжения промышленных потребителей.// Газотурбинные технологии. 2004 №4

10. Ю.И. Шаповалов Реконструкция паротурбинных электростанций — эффективный путь перевооружения энергетики.// Газотурбинные технологии. 2004 №4

11. Ю.Н. Бондин, В.А. Кривуца, С.Н. Мовчан, В.И. Романов Опыт эксплуатации газопаротурбинной установки ГПУ-16К с впрыском пара.// Газотурбинные технологии. 2004 №4

12. B. Безлепкин Теплофикационные парогазовые установки для замены устаревшего оборудования ТЭЦ ОАО «Ленэнерго» .// Газотурбинные технологии. 2004 №2

13. Михаил Коробицын Повышение эксплуатационных характеристик энергетических установок.// Газотурбинные технологии. 2004 №3

14. И. Долинин, А. Иванов Сравнение паросилового блока с Т-265 и энергоблока с двумя ПГУ-170Т.// Газотурбинные технологии. 2004 №2

15. Т.В. Новикова, И.В. Ерохина Масштабы внедрения ПГУ и ГТУ в среднесрочной перспективе.// Газотурбинные технологии. 2004 №5

Парогазовая установка — электрогенерирующая станция, служащая для производства электроэнергии. Отличается от паросиловых и газотурбинных установок повышенным КПД.

Парогазовые установки производят электричество и тепловую энергию. Тепловая энергия используется для дополнительного производства электричества.

Парогазовая установка состоит из двух отдельных блоков: паросилового и газотурбинного. В газотурбинной установке турбину вращают газообразные продукты сгорания топлива.

Топливом может служить как природный газ, так и продукты нефтяной промышленности (например мазут, дизельное топливо). На одном валу с турбиной находится генератор, который за счет вращения ротора вырабатывает электрический ток.

Проходя через газовую турбину, продукты сгорания отдают лишь часть своей энергии и на выходе из неё, когда их давление уже близко к наружному и работа не может быть ими совершена, все ещё имеют высокую температуру. С выхода газовой турбины продукты сгорания попадают в паросиловую установку, в котел-утилизатор, где нагревают воду и образующийся водяной пар. Температура продуктов сгорания достаточна для того, чтобы довести пар до состояния, необходимого для использования в паровой турбине (температура дымовых газов около 500°C позволяет получать перегретый пар при давлении около 100 атмосфер). Паровая турбина приводит в действие второй электрогенератор.

Существуют парогазовые установки, у которых паровая и газовая турбины находятся на одном валу, в этом случае устанавливается только один генератор. Также часто пар с двух блоков ГТУ—котёл-утилизатор направляется в одну общую паросиловую установку.

Иногда парогазовые установки создают на базе существующих старых паросиловых установок. В этом случае уходящие газы из новой газовой турбины сбрасываются в существующий паровой котел, который соответствующим образом модернизируется. КПД таких установок, как правило, ниже, чем у новых парогазовых установок, спроектированных и построенных «с нуля».

На установках небольшой мощности поршневая паровая машина обычно эффективнее, чем лопаточная радиальная или осевая паровая турбина, и есть предложение применять современные паровые машины в составе ПГУ.

Парогазовые установки (ПГУ) — относительно новый тип электростанций, работающих на газе, жидком или твердом топливе. Парогазовые установки (ПГУ) предназначены для получения максимального количества электроэнергии.

Общий электрический КПД парогазовой установки составляет

58-64%. Для сравнения, у работающих отдельно паросиловых установок КПД обычно находится в пределах 33-45%, в стандартных газотурбинных установках КПД составляет

  • Низкая стоимость единицы установленной мощности
  • Парогазовые установки потребляют существенно меньше воды на единицу вырабатываемой электроэнергии по сравнению с паросиловыми установками
  • Короткие сроки возведения (9-12 мес.)
  • Нет необходимости в постоянном подвозе топлива ж/д или морским транспортом
  • Компактные размеры позволяют возводить непосредственно у потребителя (завода или внутри города), что сокращает затраты на ЛЭП и транспортировку эл. энергии
  • Более экологически чистые в сравнении с паротурбинными установками
  • Низкая единичная мощность оборудования (160—972 МВт на 1 блок), в то время как современные ТЭС имеют мощность блока до 1200 МВт, а АЭС 1200—1600 МВт.
  • Необходимость осуществлять фильтрацию воздуха, используемого для сжигания топлива.
  • Ограничения на типы используемого топлива. Как правило в качестве основного топлива используется природный газ, а резервного — мазут. Применения угля в качестве топлива абсолютно исключено. Отсюда вытекает необходимость строительства недешевых коммуникаций транспортировки топлива — трубопроводов.



Введение………………………………………………………………………5 1. Общая характеристика парогазовых установок (информационный обзор)……………………………………………………………………. 6

2. Выбор схемы ПГУ и ее описание………………………………………. 10

3. Цикл ПГУ в T,s-диаграмме……………………………………………. 11

4. Термодинамический расчет цикла газотурбинной установки………….12

5. Расчет цикла паротурбинной установки………………………………. 13

6. Определение технико-экономических показателей ПТУ……………. 17

8. Определение электрической мощности ГТУ и ее технико-экономические показатели…………………………………………………..26

9. Технико-экономические характеристики ПГУ………………………..27

10. Сводная таблица и анализ результатов расчета по трем видам энергогенерирующих установок…………………………………………….30

Список использованной литературы………………………………………..31

Рост внутренних цен на топливо становится важным, и во многих случаях главным стимулом модернизации экономики, позволяя избавиться от затратных и неэффективных производств. Одновременно с этим рост КПД энергоустановок позволяет снизить себестоимость производимой электроэнергии, компенсируя в значительной степени рост стоимости топлива.

Стратегическим направлением развития мировой энергетики является внедрение парогазовых технологий (ПГУ) при выработке электроэнергии и тепла. Это направление дает возможность существенно повысить КПД конденсационных установок с 38%-40% до 55%-60%. ПГУ особенно актуальны для отечественной электроэнергетики, которая почти на 90% зависит от привозного топлива. Рост производства электроэнергии нужно рассматривать еще и с точки зрения наращивания экспортного потенциала в качестве важной валютной составляющей совокупного дохода. С этих позиций назрела необходимость внедрения современных ПГУ или надстройки паровой части в установленных ГТУ. Это позволяет значительно снизить удельные расходы топлива на выработку тепла и электроэнергии, сократить эксплуатационные расходы и численность персонала, существенно улучшить экологическую обстановку.

Парогазовые установки производят электричество и тепловую энергию. Парогазовая установка состоит из двух отдельных блоков: паросилового и газотурбинного. Топливом ПГУ может служить как природный газ, так и продукты нефтехимической промышленности, например мазут. В парогазовых установках на одном валу с газовой турбиной находится первый генератор, который за счет вращения ротора вырабатывает электрический ток. Проходя через газовую турбину, продукты сгорания отдают ей лишь часть своей энергии и на выходе из турбины все ещё имеют высокую температуру. Далее продукты сгорания попадают в паросиловую установку, в котел-утилизатор, где нагревают водяной пар. Температуры продуктов сгорания достаточно для того, чтобы довести пар до состояния, необходимого для вращения паровой турбины (температура 500 градусов по Цельсию и давление 80 атмосфер). С паровой турбиной механически связан второй генератор.

Существуют различные схемы ПГУ: ПГУ с высоконапорным парогенератором (ПГ), ПГУ с котлом-утилизатором, ПГУ с обычным (низконапорным) парогенератором. Рассмотрим схему ПГУ с высоконапорным парогенератором:

Рисунок 1.1 – Принципиальная схема ПГУ с высоконапорным ПГ

В такой ПГУ высоконапорный парогенератор (ВПГ) играет одновременно роль и энергетического котла ПТУ и камеры сгорания ГТУ. Для этого в нем поддерживается высокое давление, создаваемое компрессором ГТУ. Для повышения экономичности перед ВПГ устанавливается газовый подогреватель конденсата ГПК, уменьшающий температуру уходящих газов ГТУ.

Экономический эффект этой схемы ПГУ состоит в уменьшении объема выбрасываемых дымовых газов, так как для создания приемлемой температуры рабочего тела перед ГТ процесс горения топлива в этой схеме происходит не с большим избытком воздуха как в ГТУ, а с обычным коэффициентом расхода воздуха как в ПГ. Снижение температуры дымовых газов происходит за счет отдачи этими газами энергии воде, которая превращается в пар. Если в схему поставлен ГПК, в котором выхлопными газами ГТ нагревается питательная вода, поступающая в ВПГ, то только это мероприятие объединяет циклы ПТУ и ГТУ. Это неполная бинарность циклов.

Серьезную проблему для ПГУ с ВПГ представляет износ проточной части газовой турбины под действием продуктов коррозии внутренней части парогенератора.

Из-за высокой стоимости и низкой надежности работы ВПГ сделала эту установку практически неиспользуемой в энергетике.

Рассмотрим ниже схему ПГУ с котлом-утилизатором (рисунок 1.2):

Рисунок 1.2 — Принципиальная схема ПГУ с парогенератором утилизационного типа

( 1 — воздух из атмосферы; 2 — топливо; 3 — отработавшие в турбине газы; 4 — уходящие газы; 5 — свежий пар; 6 — питательная вода)

На рисунке 1.2 представлена схема простейшей установки со сбросом еще горячих газов (продуктов сгорания) 3, поступающих из газовой турбины (Т) в котел-утилизатор (КУ).

Как видно из рисунка 1.2, топливо 2 (газотурбинное, жидкое, газ) поступает в камеру сгорания, куда также с помощью компрессора (К) подается воздух. Компрессор размещен на одном валу с газовой турбиной и электрическим генератором; компрессор и генератор приводятся в действие газовой турбиной.

В котле-утилизаторе за счет тепла продуктов сгорания 3 вода 6 превращается в пар 5, поступающий в паровую турбину (ПТ), на одном валу с которой находится второй электрический генератор. Такого рода парогазовая установка позволяет использовать (утилизировать) тепло отработавших в газовой турбине продуктов сгорания 3. Охладившиеся в котле-утилизаторе продукты сгорания 4 выбрасываются наружу. Отработавший в паровой турбине пар поступает, как обычно, в конденсатор, в котором отдает тепло охлаждающей воде, превращается в конденсат и затем с помощью питательного насоса 6 снова поступает в котел-утилизатор.

Рассмотрим принцип действия ПГУ с обычным (низконапорным) парогенератором, схема которой изображена на рисунке 1.3:

Рисунок 1.3 – Принципиальная схема ПГУ с обычным парогенератором

В этой установке тепло уходящих газов ГТУ, содержащих достаточное количество кислорода, направляется в энергетический котел, замещая в нем воздух, подаваемый дутьевыми вентиляторами котла из атмосферы. При этом отпадает необходимость в воздухоподогревателе котла, так как уходящие газы ГТУ имеют высокую температуру. Главным преимуществом сбросной схемы является возможность использования в паротурбинном цикле недорогих энергетических твердых топлив.

В сбросной ПГУ топливо направляется не только в камеру сгорания ГТУ, но и в энергетический котел, причем ГТУ работает на легком топливе (газ или дизельное топливо), а энергетический котел — на любом топливе. В сбросной ПГУ реализуется два термодинамических цикла. Теплота, поступившая в камеру сгорания ГТУ вместе с топливом, преобразуется в электроэнергию так же, как и в утилизационной ПГУ, т.е. с КПД на уровне 50 %, а теплота, поступившая в энергетический котел — как в обычном паротурбинном цикле, т.е. с КПД на уровне 40 %. Однако достаточно высокое содержание кислорода в уходящих газах ГТУ, а также необходимость иметь за энергетическим котлом малый коэффициент избытка воздуха приводят к тому, что доля мощности паротурбинного цикла составляет примерно 2/3, а доля мощности ГТУ — 1/3 (в отличие от утилизационной ПГУ, где это соотношение обратное). Поэтому КПД сбросной ПГУ составляет примерно, т.е. существенно меньше, чем у утилизационной ПГУ. Ориентировочно можно считать, что в сравнении с обычным паротурбинным циклом экономия топлива при использовании сбросной ПГУ примерно вдвое меньше, чем экономия топлива в утилизационной ПГУ.

Кроме того, схема сбросной ПГУ оказывается очень сложной, так как необходимо обеспечить автономную работу паротурбинной части (при выходе из строя ГТУ), а поскольку воздухоподогреватель в котле отсутствует (ведь в энергетический котел при работе ПГУ поступают горячие газы из ГТУ), то необходима установка специальных калориферов, нагревающих воздух перед подачей его в энергетический котел.

Парогазовые установки производят электричество и тепловую энергию. Тепловая энергия используется для дополнительного производства электричества. Парогазовая установка состоит из двух отдельных блоков: паросилового и газотурбинного. Топливом ПГУ может служить как природный газ, так и продукты нефтехимической промышленности, например мазут. В парогазовых установках на одном валу с газовой турбиной находится первый генератор, который за счет вращения ротора вырабатывает электрический ток. Проходя через газовую турбину, продукты сгорания отдают ей лишь часть своей энергии и на выходе из турбины все ещё имеют высокую температуру. Далее продукты сгорания попадают в паросиловую установку, в котел-утилизатор, где нагревают водяной пар. Температуры продуктов сгорания достаточно для того, чтобы довести пар до состояния, необходимого для вращения (температура 500 градусов по Цельсию и давление 80 атмосфер). С паровой турбиной механически связан второй генератор.

Общий электрический КПД парогазовой установки составляет

58 — 64%. В стандартных газотурбинных установках КПД составляет

35%. Парогазовые установки (ПГУ) — относительно новый тип электростанций, работающих на газе, жидком или твердом топливе. Парогазовые установки (ПГУ) предназначены для получения максимального количества электроэнергии.

Проектирование, инжиниринг, строительство ПГУ осуществляют всемирно известные компании:

Смотрите предложения российской IPP компании !

*Парогазовые установки на английском языке называются combined-cycle power plant (CCPP)

Газотурбинные установки – ГТУ – производители и поставщики

На российском рынке сегодня представлены компании, поставляющие газовые турбины:

Газовые турбины — полезная информация:

Жарков С.В.
Институт систем энергетики
им. Л.А. Мелентьева СО РАН

«Основным критерием экономичности работы теплофикационных систем является экономия топлива. Экономия топлива, получаемая от развития теплофикации, в значительной мере зависит от соотношения электрических и тепловых мощностей теплофикационных систем»

Нынешняя зима обнажила существующие проблемы энергоснабжения московского региона, основу которого составляют отопительные ТЭЦ на газе. В то же время, вызывает сомнение, что планируемые РАО «ЕЭС России» вводы новых ТЭЦ на базе бинарных (утилизационных) парогазовых установок (ПГУ) смогут оперативно исправить ситуацию ввиду относительно больших капиталовложений и сроков строительства. Более того, ориентация на ПГУ-ТЭЦ представляется не всегда оправданной и способной увеличить потребление газа электроэнергетикой вразрез уже общепризнанной необходимости его снижения.

Так, одним из основных достоинств ПГУ является высокий КПД (до 50% и более) и, соответственно, большая выработка электроэнергии на тепловом потреблении. Но ведь потребители характеризуются определенным соотношением электрической и тепловой нагрузок. В РФ коммунально-бытовая тепловая нагрузка зимой, как правило, в несколько раз больше электрической. Поэтому производимые на ПГУ-ТЭЦ излишки электроэнергии (особенно «летние») придется выводить в электроэнергетическую систему (ЭЭС) с помощью электрических линий, что в условиях высокой стоимости городской земли вынуждает использовать дорогие подземные кабели. При этом также возрастает экологическая нагрузка на жилую территорию и уменьшается количество ТЭЦ, которое можно разместить в базисной части графика электрических нагрузок ЭЭС в целом и конкретного населенного пункта в частности.

Проектный электрический КПД ПГУ наиболее современной в России Северо-Западной ТЭЦ (г. Санкт-Петербург) составляет 45% при коэффициенте использования тепла топлива (КИТТ) равном 86%: соотношение электрической и тепловой мощностей P/Q=0.45/0.41. Однако существуют более эффективные установки с адекватным для условий европейской части РФ соотношением P/Q — парогазовые установки с впрыском пара в камеры сгорания (ПГУ-STIG). Они обладают очень высокими технико-экономическими и экологическими показателями, а при сочетании с контактными конденсаторами и теплонасосными установками (ТНУ) их КИТТ достигает 97%, что существенно увеличивает эффективность таких ТЭЦ [2] (см. табл.).

Табл. Сравнение эффективности ПГУ-ТЭЦ и ПГУ-STIG+ТНУ

*) КЭС — конденсационная станция

Поэтому представляется перспективной схема отопительных ТЭЦ, включающая:

1. Для покрытия основных (базисных) тепловых нагрузок — парогазовые установки с впрыском пара в камеры сгорания, сочетающиеся с контактными конденсаторами и теплонасосными установками (ПГУ-STIG+ТНУ). Такие установки должны рассчитываться на летний режим работы с покрытием основных электрических нагрузок потребителя и тепловой нагрузки (горячего водоснабжения). Оставшаяся часть тепловой мощности установок отводится под отопительную нагрузку.

2. Для покрытия полупиковых (в годовом разрезе) тепловых нагрузок — теплофикационные ГТУ. Целесообразность использования последних даже при небольшом числе часов использования электрической мощности обусловлена их относительно низкой стоимостью и фактом одновременного возрастания электро- и теплопотребления в зимнее время. Такие ГТУ допускают большую свободу в выборе температуры прямой сетевой воды при неизменной электрической мощности и их применение позволит: 1) повысить коэффициент теплофикации станций; 2) смягчить проблему прохождения осенне-зимнего максимума тепловой и электрической нагрузок; 3) повысить надежность энергоснабжения за счет увеличения количества энергоустановок как на отдельной станции, так и в ЭЭС в целом с учетом того, что такие ГТУ могут работать и на резервном жидком топливе; 4) предотвратить конденсацию влаги в дымовых трубах в наиболее холодные дни за счет смешения выхлопных газов ГТУ и ПГУ-STIG+ТНУ. Причем возможно использование нескольких ГТУ, последовательно включаемых (устанавливаемых) по мере роста теплопотребления.

3. Для покрытия пиковых (а также промежуточных — перед включением полупиковых ГТУ) тепловых нагрузок — пиково-резервные котельные.

Эффективное использование природного газа позволит таким ТЭЦ успешно конкурировать за квоты на него. Угольные и мазутные ТЭЦ до освоения технологий газификации могут быть ориентированы на паротурбинный аналог теплофикационных ГТУ — турбины с противодавлением. Такие турбины могут использоваться и в будущем в составе водород-кислородных ПТУ. В ближайшее же время, учитывая проблемы нынешнего отопительного сезона, представляется целесообразным:

а) перевести часть существующих теплофикационных турбин в режим противодавления с удалением роторов или последних лопаток ЦНД (например, наименее экономичных и/или наиболее изношенных) и градирен. Это позволит: 1) снизить годовые расходы природного газа и воды; 2) повысить энергетические и экологические показатели станций; 3) продлить ресурс турбин; 4) освободить место для полупиковых по теплу теплофикационных ГТУ. Мощность последних может быть равна величине снижения располагаемой мощности паровых турбин в зимнее время по сравнению с летним (до реконструкции) с целью полного использования существующей электрической инфраструктуры. Мощность таких блоков ПТУ+ГТУ будет постепенно возрастать с наступлением холодов в противовес оставшимся в ЭЭС (на станциях) турбинам с отборами пара, компенсируя снижение мощности последних. При этом ввиду высокой суточной неравномерности электропотребления коммунально-бытового сектора и одно- и двухсменных предприятий, которая возрастает именно в зимнее время, ГТУ могут использоваться в полупиковой части графика электрических нагрузок с остановом на ночь.

б) в электродефицитных районах установить на ТЭЦ дополнительные ГТУ (или противодавленческие турбины [1]), которые могли бы «забирать» тепловую нагрузку (например, на дневное время) у отборов наиболее экономичных паровых турбин с соответствующим увеличением располагаемой (конденсационной) мощности станций [1], способной участвовать в регулировании электрической мощности ЭЭС.

Таким образом, используя блоки ГТУ высокой заводской готовности, можно быстро и с небольшими затратами (большой объем реконструкции дополнительно снизит их удельные значения) нарастить «зимние» располагаемые электрические и тепловые мощности ТЭЦ, повысив при этом маневренность электроснабжения. Это также может придать импульс развитию отечественного газотурбостроения, которое будет в состоянии затем наладить выпуск блоков ПГУ-STIG+ТНУ с соответствующим повышением эффективности использования топлива в городах. В сочетании с парогазовыми, угольными и атомными загородными ТЭЦ и КЭС это позволит снизить потребление природного газа на цели тепло- и электроснабжения.

1. Мелентьев Л.А. Избранные труды. Научные основы теплофикации и энергоснабжения городов и промышленных предприятий. — М. Наука, 1993. — 364 с.

2. Комплексная парогазовая установка с впрыском пара и теплонасосной установкой (ПГУ МЭС-60) для АО «Мосэнерго» / О.Н. Фаворский, В.М. Батенин, Ю.А. Зейгарник, В.М. Масленников и др. // Теплоэнергетика. 2001. № 9. С. 50-58.

Тематические закладки — служат для сортировки и поиска материалов сайта по темам, которые задают пользователи сайта.

ПГУ — нынче тренд. И, как ни странно, тренд оправданный. Схем и конструктивных решений организации парогазового цикла — великое множество, и одни из способов — это циклы с высоконапорным парогенератором.

В силу крайней ограниченности информации по этой теме, решил поделится некоторыми выдержками из своего реферата. Итак.

Одно из самых перспективных направлений развития энергетики связано с парогазовыми (ПГУ) энергетическими установками тепловых электростанций. Парогазовые энергетические установки благодаря высокой экономичности, относительно малым удельным капиталовложениям и ряду других преимуществ находят в последние годы широкое и быстро увеличивающееся применение в энергетических системах и на промышленных электростанциях в ряде стран. В парогазовых установках теплота подводится к рабочему телу (газу) при высокой температуре продуктов сгорания органического топлива, а отвод теплоты происходит в области низких температур конденсации водяного пара.

Одна из самых ранних схем реализации парогазового цикла является ПГУ с ВПГ. Впервые подобный цикл был реализован еще в начале 30-х годов швейцарской фирмой «Броун Бовери», разработавшей конструкцию и начавшей производство высоконапорных парогенераторов «Велоке». В России цикл ПГУ с ВПГ был разработан в 1944-1945гг. в ЦКТИ им. И.И.Ползунова под руководством А.Н.Ложкина.

Принципиальная схема работы следующая:

На рисунке выше: воздух, сжатый в осевом компрессоре (К) поступает в топку высоконапорного парогенератора (ВПГ), в котором осуществляется сжигание всего топлива в цикле и где расположены испарительные и пароперегревательные поверхности нагрева воды. Горение топлива и теплообмен осуществляется при давлении воздуха за компрессором, которое в современных установках достигает 2,0 МПа. После ВПГ продукты сгорания топлива (горячий сжатый газ) поступают в газовую турбину (ГТ), В газовой турбине теплота газа переходит в механическую работу на валу турбины, которая тратится на привод компрессора (70%) и генератора тока (30%). После газовой турбины отработавшие газы, все еще имеющие высокую температуру (порядка 400 ° С), поэтому они направляются в газоводяные теплообменники (на схеме изображен высоконапорный экономайзер — Э), где их теплота полезно утилизируется. Генерируемый в котле перегретый пар направляется в паровую турбину (ПТ), после которой он конденсируется в конденсаторе. Конденсат снова направляется в котел,и цикл замыкается.

На практике, разумеется, для повышения экономичности цикла и его мощности схема усложняется. Обязательно присутствует система регенеративного подогрева конденсата и питательной воды (для которой используется либо пар, либо отработавший в ГТ газ). В газовой турбине может быть организован дополнительный подвод тепла либо промежуточное охлаждение воздуха в компрессоре.

Термодинамический анализ цикла показывает, что средний достижимый уровень КПД (нетто)* выработки электроэнергии, с использованием современного типового оборудования, — 45. 50%. Это не самый высокий показатель. На T-S диаграмме (рис. выше) видно, что в ПГУ с ВПГ рабочему телу паровой ступени тепло испарения и перегрева пара передается по изобаре высокого давления помимо газовой ступени и лишь тепло нагрева воды – через газовую ступень.

С точки зрения термодинамики бинарных циклов передача части тепла от горячего источника непосредственно нижней ступени цикла ПГУ с ВПГ нежелательно, т.к. это несколько уменьшает КПД цикла. Однако, такая передача тепла оказывается наиболее экономичной из всех возможных, если температура газа перед газовой турбиной не превышает 900°С (низкотемпературные ГТУ). При повышении температуры газа становится целесообразным переход на схему с котлом-утилизатором**, уже при начальной температуре в 1000 °С схема ПГУ с ВПГ теряет в экономичности по сравнению со схемой ПГУ с КУ. Это связано с тем, что эффективное применение КУ для ПГУ с низкотемпературными газовыми турбинами (700 – 900 °С) затруднено вследствие получения пара низких параметров, что приводит к снижению КПД парового цикла и, соответственно КПД ПГУ в целом. Применение схемы с ВПГ позволяет получить оптимально высокие параметры пара в котле, что обеспечивает наивысший из всех возможных КПД ПГУ для низкотемпературных газовых турбин. Например, при начальной температуре газа в 900°С КПД цикла с ВПГ может достигать 50%, цикла с КУ — только 42. 45%.

Однако можно заметить, что достижимый уровень КПД ПГУ с ВПГ незначительно превышает КПД мощных ПСУ с развитой системой регенерации.

Для сравнения: абсолютные электрические КПД брутто регенеративных паротурбинных установок обычных (ПТУ) ТЭЦ:

Тем не менее, цикл ПГУ с ВПГ всегда экономичен стандартного цикла ПТУ той же мощности.

КПД ПГУ с ВПГ можно определить:

,

здесь η — КПД, Q — количества тепла, подведенного в цикле; ПС — паровая часть цикла (паровая ступень), ГС — газовая часть цикла (газовая ступень).

Видно, что повышение экономичности ПГУ с ВПГ по отношению к ПТУ обусловлено в основном относительной мощностью газовой ступени. При этом КПД газовой и паровой части не должны быть равны (в идеале — КПД газовой части ниже), иначе КПД ПГУ будет равен КПД паровой части.

Высоконапорный парогенератор — необычное устройство, требующего специального проектирования. Без него осуществление цикла невозможно. Сжигание топлива в топочном устройстве высоконапорного парогенератора осуществляется под давлением. Повышение давления в топочном устройстве позволяет интенсифицировать рабочий процесс, сократить радиационные и конвективные поверхности нагрева, а следовательно, превратить агрегат в компактный малогабаритный парогенератор, размещаемый в непосредственной близости от паровой турбины. По сравнению с паровыми котлами равных параметров ВПГ позволяет экономить до 30–40% металла (в том числе до 50% легированных сталей) и до 10% изоляционных и обмуровочных материалов. Стоимость ВПГ по сравнению с обычным котлом той же производительности снижается на 40. 55%. Вместе с тем снижается и длина, и стоимость главных паропроводов.

Итак, парогазовые установки с высоконапорными парогенераторами, как говорилось ранее, обладают определенными термодинамическими и технологическими преимуществами по сравнению с ПТУ и ПГУ с низкотемпературными газовыми турбинами малой единичной мощности. Наибольшее влияние на КПД цикла ПГУ с ВПГ оказывает паросиловой цикл. К тому же, при однократном подводе тепла в газовом цикле соотношение полезных мощностей газовой и парой частей установки изменяется в зависимости от параметров в диапазоне 1/8…1/6 (мощность газовой турбины составляет 10. 20% от всей мощности установки). При этом, в зависимости от параметров пара, газа, единичной мощности агрегатов возможно повысить КПД установки на 2…8% по сравнению с циклом ПТУ той же мощности. Экономия топлива при этом составляет 5…16%.

Благодаря уменьшению расхода пара в паровой турбине можно уменьшить расход охлаждающей воды через конденсатор на 30%, что снижает затраты на собственные нужды на 10. 15%.

Кроме того, применение высоконапорных парогенераторов обеспечивает сокращение капитальных затрат, обусловленное малыми габаритами котельного оборудования. Металловложения на всю установку можно сократить на 25% по сравнению с аналогичной ПТУ.

В цикле с ВПГ возможно использование типовых паротурбинных установок. Это упрощает проектирование новых ПГУ, делает возможным модернизацию современных паросиловых блоков ТЭЦ без замены турбинного оборудования. Так же, без существенно снижения КПД блока, можно оставить без изменений и систему паровой регенерации.

В цикле ПГУ с ВПГ вместо камеры сгорания газовой турбины используется котел. Это дает возможность в качестве топлива применять не только природный газ, но и низкокачественное жидкое и твердое топливо. При этом в ВПГ возможно применение технологии кипящего слоя.

ВПГ (на любом виде топлива) способен обеспечить стабильные высокие параметры пара. Это позволяет применить в качестве паросиловой установки турбин большой мощности (500 МВт и более) на сверхкритические и суперсверхкритические параметры пара при одновременном применении относительно недорогих газовых турбин малой и средней мощности (порядка 50…100 МВт) на невысокие начальные температуры. КПД энергоблока при грамотной проектировке схемы может достичь 55% (при температуре пара 600°С), что лишь немногим ниже, чем в схемах ПГУ с котлом-утилизатором при одновременно более низких капитальных затратах. ПРи этом следует учесть, надежность и ресурс современных низкотемпературных газовых турбин выше, чем высокотемпературных и незначительно меньше, чем паротурбинного оборудования. Соответственно, коэффициен т готовности такой ПГУ будет равен 96%, что выше среднего значения для других ПГУ и равно значению для ПТУ.

В схемах с ВПГ на высокие параметры пара целесообразно осуществлять вторичный перегрев пара за счет теплоты уходящих газов, заменяя частично или полностью водяной экономайзер вторичным пароперегревателем. При такой схеме давление в промежуточном пароперегревателе может быть значительно снижено против принятых в настоящее время без ущерба для термодинамического совершенства цикла. Это, в свою очередь, позволяет снизить и температуру вторичного перегрева, что позволяет применить в конструкции вторичного пароперегревателя более дешевые стали при одновременном повышении его надежности.

Особое преимущество схемы с ВПГ приобретают в установках, рассчитанных на использование пара сверхкритических и суперсверкритических давлений. Так, например, при начальном давлении 30 МПа и первичном перегреве 570°С можно ограничится одним промежуточным перегревом до 480°С при давлении 1,2 МПа. В ПТУ на подобные параметры пришлось бы осуществить два промежуточных перегрева, а общий КПД при этом был не больше, чем при вышеупомянутой схеме.

Малые удельные весовые и габаритные показатели котельного оборудования по сравнению с обычными котлами делают схемы ПГУ с ВПГ привлекательными для судового транспорта.

Высокие температура и давление продуктов сгорания топлива в ВПГ позволяет использовать их в качестве теплоносителя в технологических процессах для получения химических продуктов. В такой энерготехнологической установке осуществляется одновременное производство тепла, электроэнергии и продукции. Особенностью энерготехнологических установок на базе ПГУ с ВПГ являются малые габариты реакторов и других технологических аппаратов, что обусловлено ведением процесса при высоком давлении. ПГУ с ВПГ можно использовать в технологическом цикле для производства азотной кислоты и некоторых синтетических продуктов.

В заключение добавлю, что приведенные данные говорят о преимуществе комбинированных установок с ВПГ даже при весьма низкой температурой перед газовой турбиной. Средний КПД такого цикла может достигать 48. 50%, что обеспечивает экономию топлива по сравнению с аналогичной ПТУ до 16%.

На сегодня повсеместное применение ПГУ с ВПГ ограничено широким введением более термодинамически совершенных блоков ПГУ с котлом-утилизатором с применением высокотемпературных газовых турбин средней (до 160 МВт) и большой (до 450 МВт) единичной мощности. Но следует учесть, что турбины для такой схемы требуют особого проектирования.

С учетом особенностей схему ПГУ с ВПГ такой блок оправдывает себя при необходимости использования паровых турбин как основной мощности блока (н-р, повышенный коэффициент теплофикации, необходимость большой единичной мощности), применении твердых топлив, а так же при невозможности использования дорогих высокотемпературных газовых турбин (по требованиям к качеству топлива, из-за высокой цены покупки и обслуживания).

_______________
*КПД (нетто) — коэффициент полезного действия. Показывает, какая часть теплоты сгоревшего топлива была полезно использована для выработки мощности. Нетто — с учетом затрат вырабатываемой эл.энергии и тепла на собственные нужды.
** Максимальный КПД такого цикла достигает 62% при начальной температуре газа 1500 ° С. Это самый термодинамически совершенный цикл. Для стехиометрических ГТУ КПД можно поднять до 70%, но это экономически нецелесообразно.

Tablica sravneniya Kaskometra s drugimi resheniyami dlya rascheta stoimosti polisa KASKO

Professionalnyy strahovoy kalkulyator Kaskometr

Resheniya na baze Excel (naprimer, «kalkulyator KASKO Palceva — InsSolver»)